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Preface

The first Algorithmic Number Theory Symposium took place in May 1994 at
Cornell University. The preface to its proceedings has the organizers expressing
the hope that the meeting would be “the first in a long series of international
conferences on the algorithmic, computational, and complexity theoretic aspects
of number theory.” ANTS VIII was held May 17-22, 2008 at the Banff Centre
in Banff, Alberta, Canada. It was the eighth in this lengthening series.

The conference included four invited talks, by Johannes Buchmann (TU
Darmstadt), Andrew Granville (Université de Montréal), Francois Morain (Ecole
Polytechnique), and Hugh Williams (University of Calgary), a poster session, and
28 contributed talks in appropriate areas of number theory.

Each submitted paper was reviewed by at least two experts external to the
Program Committee; the selection was made by the committee on the basis of
those recommendations. The Selfridge Prize in computational number theory was
awarded to the authors of the best contributed paper presented at the conference.

The participants in the conference gratefully acknowledge the contribution
made by the sponsors of the meeting.

May 2008 Alf van der Poorten and Andreas Stein (Editors)
Renate Scheidler (Organizing Committee Chair)
Igor Shparlinski (Program Committee Chair)

Conference Website

The names of the winners of the Selfridge Prize, material supplementing the
contributed papers, and errata for the proceedings, as well as the abstracts of
the posters and the posters presented at ANTS VIII, can be found at:
http://ants.math.ucalgary.ca.
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Running Time Predictions
for Factoring Algorithms

Ernie Croot', Andrew Granville?, Robin Pemantle?, and Prasad Tetali**

1'School of Mathematics, Georgia Tech, Atlanta, GA 30332-0160, USA

ecroot@math.gatech.edu

2 Département de mathématiques et de statistique, Université de Montréal,

Montréal QC H3C 3J7, Canada
andrew@dms .umontreal.ca
3 Department of Mathematics, University of Pennsylvania, 209 S. 33rd Street,
Philadelphia, Pennsylvania 19104, USA

pemantle@math.upenn.edu

4 School of Mathematics and College of Computing, Georgia Tech, Atlanta,

GA 30332-0160, USA

tetali@math.gatech.edu

In 1994, Carl Pomerance proposed the following problem:

Select integers aj,as,...,a; at random from the interval [1,z], stopping when
some (non-empty) subsequence, {a; : i € I} where I C {1,2,...,J}, has a square
product (that is [],.;a; € Z?). What can we say about the possible stopping
times, J?

A 1985 algorithm of Schroeppel can be used to show that this process stops af-
ter selecting (1+4€)Jo(x) integers a; with probability 1—o(1) (where the function
Jo(zx) is given explicitly in ({l) below. Schroeppel’s algorithm actually finds the
square product, and this has subsequently been adopted, with relatively minor
modifications, by all factorers. In 1994 Pomerance showed that, with probability
1—o0(1), the process will run through at least Jy(z)' () integers a;, and asked
for a more precise estimate of the stopping time. We conjecture that there is a
“sharp threshold” for this stopping time, that is, with probability 1 — o(1) one
will first obtain a square product when (precisely) {e=7 + o(1)}Jy(z) integers
have been selected. Herein we will give a heuristic to justify our belief in this
sharp transition.

In our paper [] we prove, with probability 1 — o(1), that the first square
product appears in time

[(w/4)(e™" = o(1))Jo(x), (77 +o(1))Jo(x)],

where v = 0.577... is the Euler-Mascheroni constant, improving both Schroeppel
and Pomerance’s results. In this article we will prove a weak version of this the-
orem (though still improving on the results of both Schroeppel and Pomerance).

el

* The first author is supported in part by an NSF grant. Le deuxiéme auteur est
partiellement soutenu par une bourse de la Conseil de recherches en sciences na-
turelles et en génie du Canada. The third author is supported in part by NSF Grant
DMS-01-03635.

A.J. van der Poorten and A. Stein (Eds.): ANTS-VIIT 2008, LNCS 5011, pp. 1136] 2008.
© Springer-Verlag Berlin Heidelberg 2008



2 E. Croot et al.

We also confirm the well established belief that, typically, none of the integers
in the square product have large prime factors.

Our methods provide an appropriate combinatorial framework for studying
the large prime variations associated with the quadratic sieve and other factoring
algorithms. This allows us to analyze what factorers have discovered in practice.

1 Introduction

Most factoring algorithms (including Dixon’s random squares algorithm [5], the
quadratic sieve [14], the multiple polynomial quadratic sieve [T9], and the number
field sieve [2] — see [I§] for a nice expository article on factoring algorithms) work
by generating a pseudorandom sequence of integers a1, as, ..., with each

a; = b7 (mod n),

for some known integer b; (where n is the number to be factored), until some
subsequence of the a;’s has product equal to a square, say

2 _
Y = A4y - Ay

and set
X2 = (bil blk)2

Then
n|Y?2-X?=(Y - X)(Y +X),

and there is a good chance that ged(n,Y — X) is a non-trivial factor of n. If so,
we have factored n.

In his lecture at the 1994 International Congress of Mathematicians, Pomer-
ance [T6/T7] observed that in the (heuristic) analysis of such factoring algorithms
one assumes that the pseudo-random sequence aq, as, ... is close enough to ran-
dom that we can make predictions based on this assumption. Hence it makes
sense to formulate this question in its own right.

Pomerance’s Problem. Select positive integers aj,as, -+ < x independently
at random (that is, a; = m with probability 1/x for each integer m, 1 < m < z),
stopping when some subsequence of the a;’s has product equal to a square (a
square product). What is the expected stopping time of this process ?

There are several feasible positive practical consequences of resolving this
question:

— It may be that the expected stopping time is far less than what is obtained
by the algorithms currently used. Hence such an answer might point the way
to speeding up factoring algorithms.

— Even if this part of the process can not be easily sped up, a good under-
standing of this stopping time might help us better determine the optimal
choice of parameters for most factoring algorithms.
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Let 7(y) denote the number of primes up to y. Call n a y-smooth integer if all of
its prime factors are < y, and let ¥(x, y) denote the number of y-smooth integers
up to x. Let yo = yo(x) be a value of y which maximizes ¥(x,y)/y, and

Jo(z) == WTH(CZ,J(Z)J)O) x. (1)

In Pomerance’s problem, let T be the smallest integer ¢ for which aq, ..., a; has
a square dependence (note that T is itself a random variable). As we will see in
section 4.1, Schroeppel’s 1985 algorithm can be formalized to prove that for any
€ > 0 we have

Prob(T" < (14¢€)Jo(x)) =1—o0.(1)

as r — oo. In 1994 Pomerance showed that
Prob(T > Jo(x)'7¢) =1 — o.(1).

as x — o00. Therefore there is a transition from “unlikely to have a square
product” to “almost certain to have a square product” at T = Jy(z) o),
Pomerance asked in [3] whether there is a sharper transition, and we conjecture
that T has a sharp threshold:

Conjecture. For every ¢ > 0 we have
Prob(T € [(e™" —€)Jo(x), (e77 +€)Jo(x)]) =1 — 0c(1), (2)
as r — 00, where v = 0.577... is the Euler-Mascheroni constant.

The bulk of this article will be devoted to explaining how we arrived at this
conjecture. In [4] we prove the upper bound in this conjecture using deep proba-
bilistic methods in an associated random graph. Here we discuss a quite different
approach which justifies the upper bound in this conjecture, but we have not
been able to make all steps of the proof rigorous.

The constant e™” in this conjecture is well-known to number theorists. It
appears as the ratio of the proportion of integers free of prime divisors smaller
than y, to the proportion of integers up to y that are prime, but this is not how
it appears in our discusssion. Indeed herein it emerges from some complicated
combinatorial identities, which have little to do with number theory, and we
have failed to find a more direct route to this prediction.

Herein we will prove something a little weaker than the above conjecture (though
stronger than the previously known results) using methods from combinatorics,
analytic and probabilistic number theory:

Theorem 1. We have
Prob(T" € [(m/4)(e™” —o(1))Jo(z), (3/4)Jo(z)]) = 1—o(1),

as r — oo.
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To obtain the lower bound in our theorem, we obtain a good upper bound on
the expected number of sub-products of the large prime factors of the a;’s that
equal a square, which allows us to bound the probability that such a sub-product
exists, for T < (n/4)(e”” — o(1))Jo(x). This is the “first moment method”.
Moreover the proof gives us some idea of what the set I looks like: In the unlikely
event that T' < (w/4)(e”7—o(1))Jo(x), with probability 1—o(1), the set I consists
of a single number ar, which is therefore a square. If T lies in the interval given
in Theorem [] (which happens with probability 1 —o(1)), then the square product
I is composed of yo ™) = Jy(2)'/2+°(M) numbers a; (which will be made more
precise in [4]).

Schroeppel’s upper bound, T' < (140(1))Jy(z) follows by showing that one ex-
pects to have more than 7(yo) yo-smooth integers amongst a1, ao, . . ., ar, which
guarantees a square product. To see this, create a matrix over Fo whose columns
are indexed by the primes up to yo, and whose (i, p)-th entry is given by the
exponent on p in the factorization of a;, for each yp-smooth a;. Then a square
product is equivalent to a linear dependence over Fo amongst the corresponding
rows of our matrix: we are guaranteed such a linear dependence once the matrix
has more than 7(yg) rows. Of course it might be that we obtain a linear depen-
dence when there are far fewer rows; however, in section 3.1, we give a crude
model for this process which suggests that we should not expect there to be a
linear dependence until we have very close to m(yg) rows.

Schroeppel’s approach is not only good for theoretical analysis, in practice
one searches among the a; for yp-smooth integers and hunts amongst these for a
square product, using linear algebra in Fy on the primes’ exponents. Computing
specialists have also found that it is easy and profitable to keep track of a; of
the form s;q;, where s; is yg-smooth and ¢; is a prime exceeding yq; if both a;
and a; have exactly the same large prime factor ¢; = ¢; then their product is a
yo-smooth integer times a square, and so can be used in our matrix as an extra
smooth number. This is called the large prime variation, and the upper bound
in Theorem [I] is obtained in section 4 by computing the limit of this method.
(The best possible constant is actually a tiny bit smaller than 3/4.)

One can also consider the double large prime variation in which one allows two
largish prime factors so that, for example, the product of three a;s of the form
pgsy, prss, qrss can be used as an extra smooth number. Experience has shown
that each of these variations has allowed a small speed up of various factoring
algorithms (though at the cost of some non-trivial extra programming), and a
long open question has been to formulate all of the possibilities for multi-large
prime variations and to analyze how they affect the running time. Sorting out
this combinatorial mess is the most difficult part of our paper. To our surprise
we found that it can be described in terms of the theory of Huisimi cacti graphs
(see section [B]). In attempting to count the number of such smooth numbers
(including those created as products of smooths times a few large primes) we
run into a subtle convergence issue. We believe that we have a power series which
yields the number of smooth numbers, created independently from ai,...,ay,
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simply as a function of J/Jy; if it is correct then we obtain the upper bound in
our conjecture.

In the graphs constructed here (which lead to the Husimi graphs), the vertices
correspond to the a;’s, and the edges to common prime factors which are > yo.
In the random hypergraphs considered in [4] the vertices correspond to the prime
factors which are > yo and the hyperedges, which are presented as subsets of
the set of vertices, correspond to the prime factors of each a;, which divide a;
to an odd power.

In [4] we were able to understand the speed up in running time using the
k-large prime variation for each k > 1. We discuss the details of the main results
of this work, along with some numerics, in section [l We also compare, there,
these theoretical findings, with the speed-ups obtained using large prime vari-
ations by the researchers who actually factor numbers. Their findings and our
predictions differ significantly and we discuss what might contribute to this.

When our process terminates (at time T') we have some subset I of a1, ..., ar,
including ar, whose product equals a squareﬂ If Schroeppel’s argument comes
close to reflecting the right answer then one would guess that a;’s in the square
product are typically “smooth”. In section 3.2 we prove that they will all be
J@-smooth with probability 1 — o(1), which we improve to

ya exp((2 + ¢) \/log yo loglogyg) — smooth.

in [4], Theorem 2. We guess that this may be improvable to yé“—smooth for any

fixed € > 0.

Pomerance’s main goal in enunciating the random squares problem was to
provide a model that would prove useful in analyzing the running time of fac-
toring algorithms, such as the quadratic sieve. In section [ we will analyze the
running time of Pomerance’s random squares problem showing that the running
time will be inevitably dominated by finding the actual square product once we
have enough integers. Hence to optimize the running time of the quadratic sieve
we look for a square dependence among the y-smooth integers with y signifi-
cantly smaller than yg, so that Pomerance’s problem is not quite so germane to
factoring questions as it had at first appeared.

This article uses methods from several different areas not usually associated
with factoring questions: the first and second moment methods from probabilistic
combinatorics, Husimi graphs from statistical physics, Lagrange inversion from
algebraic combinatorics, as well as comparative estimates on smooth numbers
using precise information on saddle points.

2 Smooth Numbers

In this technical section we state some sharp results comparing the number of
smooth numbers up to two different points. The key idea, which we took from

! Note that I is unique, else if we have two such subsets I and J then (IU.J)\ (IN.J)
is also a set whose product equals a square, but does not contain ar, and so the
process would have stopped earlier than at time 7.
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[10], is that such ratios are easily determined because one can compare very
precisely associated saddle points — this seems to be the first time this idea has
been used in the context of analyzing factoring algorithms.

2.1 Classical Smooth Number Estimates
From [I0] we have that the estimate

log(u + 1)
logy

w(x,y)zxp(u){Ho( )} as 7 —o00 where z=y" (3)

holds in the range

exp ((loglogz)?) <y < =, (4)

where p(u) =1 for 0 < u < 1, and where

1 u
plu) = / p(t)dt for all u > 1.
U Jy—1

This function p(u) satisfies

plu) = (eu—iioog(zll)> = exp(—(u+ o(u))logu); (5)
and so
U(z,y) = zexp(—(u+ o(u))logu). (6)
Now let

1
L:=L(z) =exp <\/2 log z log logax> .

Then, using (@) we deduce that for 3 > 0,
W(m,L(m)ﬁ+°(l)) - xL(x)*l/ﬁﬁJ(l). (7)
From this one can easily deduce that
yo(z) = L<m)1+o(1)7 and Jo(z) = yg—{1+0(1)}/10g10gyo _ L(ac)2+°(1)7 (8)

where yo and Jy are as in the introduction (see (). From these last two equations

we deduce that if y = y€+o(1)7 where § > 0, then

T (z,y)/y BT o)
W($7y0)/y0 0

For any a > 0, one has
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which is minimized by selecting v = «a(z, y) to be the solution to

logp
1 = .
ogx E o1 (10)
p<y

We show in [d] that for y = L(x)%t°() = y€+o(1) we have

y' = ~ B logy ~ B log yo. (11)
Moreover, by [I0, Theorem 3], when 1 < d <y < x/d we have
x 1 1 logy
(50) = o P @) <1+O(u o )) . (12)

By iterating this result we can deduce (see [4]) the following:

Proposition 1. Throughout the range (), for any 1 < d < x, we have

T 1
V(50) S ey Pl +o(1)),
where « is the solution to (I0).

Now Lemma 2.4 of [4] gives the following more accurate value for yo:

1 —log?2 1 2
logyo =log L(x) | 1+ 083 T — 108 + 0 083 T . (13)
2logy x logy

It is usual in factoring algorithms to optimize by taking v (z,y) to be roughly
x/y:
Lemma 1. If ¢(z,y) = x/y'te(1/1oelogy) then

1+o(1))_

logy = log yo (1 -
logy

Proof. By @) and (&) we have

1
u(logu + loglogu — 14 o0(1)) =logy (1 + o0 ,
loglogy
and from here it is a simple exercise to show that
1
gy [, 140D
loglog y loglogy

Substituting v = (logx)/(logy) and solving we obtain

log3ax—log2—2+o(1)>

logy = log L(x) (1 + 2log, &

from which our result follows using ([3). O
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3 Some Simple Observations

3.1 A Heuristic Analysis

Let M = 7(y) and
=2 <p=3 < ... < pum

be the primes up to y. Any y-smooth integer

pilpgz . .p?&l

gives rise to the element (e1,ea,...ens) of the vector space FA?. The probability
that any given element of F) arises from Pomerance’s problem (correspond-
ing to a y-smooth value of a;) varies depending on the entries in that element.
Pomerance’s problem can be rephrased as: Let y = . Select elements vy, v, . ..
of F}! each with some specific probability (as above), and stop at vz as soon as
v1, V2, ..., vy are linearly dependent. The difficulty in this version is in quantify-
ing the probabilities that each different v € F) occurs, and then manipulating
those probabilities in a proof since they are so basis dependent.

As a first model we will work with an approximation to this question that
avoids these difficulties: Now our problem will be to determine the distribution
of T when each element of F3! is selected with probability 1/2*. We hope that
this model will help us gain some insight into Pomerance’s question.

If v1,v2,..,v0—1 are linearly independent they generate a subspace Sy of di-
mension ¢ — 1, which contains 2¢~! elements (if 1 < ¢ < M+1). Then the
probability that vy, v, .., vy are linearly dependent is the same as the probability
that v, belongs to Sy, which is 2671 /2. Thus the expectation of T is

MAL ge—1 21 9i—1
ZEQM H(l_ 2M>_)

(=1 =1
1\ (&L (M 4+1—5) { 1\~!
(o) (S5 Iy

= M — .60669515... as M — oo.

(By convention, empty products have value 1.) Therefore |T'— M| has expected
value O(1). Furthermore,

Prob(|T — M| >n)= > Prob(T=M-10) < > 27 t=2"""
{>n+1 {>n+1

for each n > 1, so that if ¢(t) — oo as t — oo then
Prob(T' € [M —¢(M), M])=1 — o(1).

Hence this simplified problem has a very sharp transition function, suggesting
that this might be so in Pomerance’s problem.
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3.2 No Large Primes, I

Suppose that we have selected integers ay, as, ..., ar at random from [1, z], stop-
ping at T since there is a non-empty subset of these integers whose product is
a square. Let g be the largest prime that divides this square. Then either ¢?
divides one of ay,as,...,ar, or q divides at least two of them. The probability
that p? divides at least one of a1, a, ..., ar, for a given prime p, is < T'/p?; and
the probability that p divides at least two of a1, as,...,ar is < (g) /p?. Thus

1

1
Prob(g > T?) < T? ) 2 Clog T

p>T?2

by the Prime Number Theorem.

By Pomerance’s result we know that T — oo with probability 1 4 o(1); and
so the largest prime that divides the square product is < T? with probability
1 —o(1). We will improve this result later by more involved arguments.

4 Proof of the Upper Bound on T in Theorem [

Our goal in this section is to prove that
Prob(T < (3/4)Jo(x)) =1 —o(1),

as xr — 00.
We use the following notation throughout. Given a sequence

ai, ..., a5 <
of randomly chosen positive integers, let
pr=2 < pp=3 < ... < Dr(x)
denote the primes up to z, and construct the J-by-m(x) matrix A, which we take
mod 2, where
a; = H p; 7.

1<j<n(@)

Then, a given subsequence of the a; has square product if the corresponding
row vectors of A sum to the 0 vector modulo 2; and, this happens if and only if
rank(A) < J. Here, and henceforth, the rank is always the Fo-rank.

4.1 Schroeppel’s Argument

Schroeppel’s idea was to focus only on those rows corresponding to yg-smooth
integers so that they have no 1’s beyond the 7(yo)-th column. If we let S(yg)
denote the set of all such rows, then Schroeppel’s approach amounts to showing
that

1S(yo)| > 7(yo)
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holds with probability 1 —o(1) for J = (1 +¢)Jy, where Jy and yo are as defined
in (). If this inequality holds, then the |S(yo)| rows are linearly dependent mod
2, and therefore some subset of them sums to the 0 vector mod 2.

Although Pomerance [I5] gave a complete proof that Schroeppel’s idea works,
it does not seem to be flexible enough to be easily modified when we alter
Schroeppel’s argument, so we will give our own proof, seemingly more compli-
cated but actually requiring less depth: Define the independent random variables
Y1,Ys,... so that Y; = 1 if a; is y-smooth, and Y; = 0 otherwise, where y will
be chosen later. Let

N=Y+ ---4+Yy,

which is the number of y-smooth integers amongst aq,...,as. The probability
that any such integer is y-smooth, that is that Y; = 1, is ¥(x,y)/«; and so,

Jp(z,y)

B(N) = """

Since the Y; are independent, we also have
VN) =) (B(Y?) —E(Y)?) = ) _(E(Y;) —E(Y)?) <

Thus, selecting J = (1 + €)zn(y)/¥(z,y), we have, with probability 1 + o.(1),
that

Jw(xvy)_

xr

N=(1+e+o(1)rly) > r(y).

Therefore, there must be some non-empty subset of the a;’s whose product is a
square. Taking y = yg we deduce that

Prob(T" < (1+¢€)Jo(x)) =1—o0c(1).

Remark. One might alter Schroeppel’s construction to focus on those rows
having only entries that are 0 (mod 2) beyond the 7(yo)-th column. These rows
all correspond to integers that are a yp-smooth integer times a square. The
number of additional such rows equals

T T ¥(x,yo)
Z !I/(dQ,llo)S Z W(d27yo> ZdQ yHO 1
d>1 d<y?

p(d)>yo Yo=Y
by Proposition[Il the prime number theorem, ([[l) and (), respectively, which
one readily sees are too few to significantly affect the above analysis. Here and
henceforth, p(n) denotes the smallest prime factor of n, and later on we will use
P(n) to denote the largest prime factor of n.

4.2 The Single Large Prime Variation

If, for some prime p > y, we have psi,psa, ..., ps, amongst the a;, where each s;
is y-smooth, then this provides us with precisely » — 1 multiplicatively indepen-
dent pseudo-smooths, (ps1)(ps2), (ps1)(pss), ..., (ps1)(ps,). We will count these
using the combinatorial identity
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r—1= > (=n

Ic{1,...,r}
[7]>2
which fits well with our argument. Hence the expected number of smooths and
pseudo-smooths amongst a1, ...,a; equals

1
T¥(z,y) + Z (—1)”| Prob(a; =ps;: i € I, P(s;) <y < p, p prime)

T
Ic{1,...,r}
|7]>2

P (O E Y

k>2 P>y

Using ([I2) we have, by the prime number theorem, that

w(z/p,y)\" 1 ytook 1 ,
2 ( @ (z,y) ) 2 pet  (ak—1)logy  (k—1D)m(y)k—1’

p>y P>y

using () for y =< yo. Hence the above becomes, taking J = nzw(y)/¥(x,y),

ok
~ 77—|—Z k'((kn—) 1) m(y). (15)

k>2

One needs to be a little careful here since the accumulated error terms might
get large as k — oo. To avoid this problem we can replace the identity (I4) by
the usual inclusion-exclusion inequalities; that is the partial sum up to k even is
an upper bound, and the partial sum up to k£ odd is a lower bound. Since these
converge as k — oo, independently of z, we recover (IH]). One can compute that
the constant in (&) equals 1 for n = .74997591747934498263 . . ; or one might
observe that this expression is > 1.000037(y) when n = 3/4.

4.3 From Expectation to Probability

Proposition 2. The number of smooth and pseudosmooth integers (that is,
integers that are a yo-smooth number times at most one prime factor > )
amongst ay,as,...,ay with J = nJy is given by (I&), with probability 1 — o(1),
as r — oo.

Hence, with probability 1—o(1), we have that the number of linear dependencies
arising from the single large prime variation is ([IH]) for J = nJy(z) with y = yq
as ¢ — o0o. This is > (1 + )7 (yo) for J = (3/4)Jo(x) with probability 1 — o(1),
as © — oo, implying the upper bound on T in Theorem [l

Proof (of Proposition2)). Suppose that ay, ..., ay < 2 have been chosen randomly.
For each integer r > 2 and subset S of {1,...,J} we define a random variable
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X.,.(9) as follows: Let X,.(S) = 1 if each as, s € S equals p times a y-smooth for
the same prime p > y, and let X,.(S) = 0 otherwise. Therefore if

V= > X(9),
Sc{1,...,J}
|S|=r
then we have seen that .
n
E(Y,) ~ .
()~ ™)

Hence each .
J\ n"
E(X,(S)) ~
sy~ (7))

for every S C {1,...,J}, since each of the X, (S) have the same probability
distribution.

Now, if S; and Sy are disjoint, then X,.(S1) and X,.(S2) are independent, so
that

E(Xr(51)X:(52)) = E(X,(51))E(X;(52))-

If S7 and S5 are not disjoint and both X,.(S1) and X,.(S2) equal 1, then Xg(S) =
1 where S = 51U Sy and R = |S|. We just saw that

1 R
A~ (7)) -

Hence if |S; N Se| = j then

-1 2r—j
B )~ (5,1 ) o a1y
Therefore
E(Y?) -EY,) = > E(X(S1)X.(S2) — E(X,(S1))E(X,(S2))
A

T J -1 n2r—j

< 1

NW(y);(m«_J) @2r —)2r—j—1) 2
|51052|:j

" 2r—j

=X o e — e S AW,

Hence by Tchebychev’s inequality we deduce that

B(Y?)—E(Y,)? 1
EE(Y,)? S en(y)’

so that Y, ~ E(Y,.) with probability 1 — o(1). 0

Prob(|Y; — E(Y;)| > eE(Y;)) <,
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5 The Lower Bound on T'; a Sketch

We prove that
Prob(T > (r/4)(e™" — o(1))Jo(z)) =1 — o(1),

in [], by showing that for J(x) = (7/4)(e”7 — o(1))Jo(x) the expected number
of square products among aq, ..., ay is o(1).

By considering the common divisors of all pairs of integers from aq,...,a
we begin by showing that the probability that a square product has size k, with
2 < k <logz/2loglogz, is O(J?logxz/x) provided J < x°(1),

Next we shall write a; = b;d; where P(b;) < y and where either d; = 1 or
p(d;) >y (here, p(n) denotes the smallest prime divisor of n), for 1 <i < k. If
ai,...,a; are chosen at random from [1, z] then

Prob(ay ...a; € Z*) < Prob(d; ...d;, € Z?)

x/d;,
S |

dy,....dp>1 =1
dl...dk.EZz
d;=1 or p(d;)>y

T k T n2
< <{1+0(1)}W(x, y)> > ’jfza) , (16)
n=1 or p(n)>y

by Proposition[Il Out of J = n.Jy integers, the number of k-tuples is

(i) < (eJ/k)";

and so the expected number of k-tuples whose product is a square is at most

((e+0(1)) ny e y)/y )k 11 (1+ T’“(gf) + T’“(fj) +> (17)

klogyo ¥(z,y0)/y0) 2 P p
For logz/2loglogz < k < yé/4 we take y = yé/g and show that the quantity in

@ is < 1/22.

For yé/4 <k= yg < J =mnJy < Jy we choose y so that [k/C] = n(y), with C
sufficiently large. One can show that the quantity in (7) is < ((1 + €)4neY /m)*
and is significantly smaller unless 3 = 1 + o(1). This quantity is < 1/2? since
1 < 4me”7 — € and the result follows.

This proof yields further useful information: If either J < (7 /4)e™"—o(1) Mo (z),
orif k < y W or k> yé“(l), then the expected number of square products
with k > 1is O(Jo(x)?logx/x), whereas the expected number of squares in our
sequence is ~ J//z. This justifies the remarks immediately after the statement
of Theorem [T

Moreover with only minor modifications we showed the following in [4]: Let
y1 = yoexp((1 + €)v/logyo loglogyy) and write each a; = b;d; where P(b;) <
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y =11 < p(d;). If d;, ...d;, is a subproduct which equals a square n?, but such
that no subproduct of this is a square, then, with probability 1 — o(1), we have
I = o(logyo) and n is a squarefree integer composed of precisely | — 1 prime
factors, each < y2, where n < y?..

6 A Method to Examine All Smooth Products

In proving his upper bound on 7', Schroeppel worked with the yp-smooth integers
amongst ai,...,ar (which correspond to rows of A with no 1’s in any column
that represents a prime > yp), and in our improvement in section 4.2 we worked
with integers that have no more than one prime factor > yo (which correspond
to rows of A with at most one 1 in the set of columns representing primes > yjo).
We now work with all of the rows of A, at the cost of significant complications.

Let A,, be the matrix obtained by deleting the first m(yo) columns of A. Note
that the row vectors corresponding to yg-smooth numbers will be 0 in this new
matrix. If

rank(4,,) < J - (yo), (18)

then
rank(A) < rank(A,,) +7(yo) < J,

which therefore means that the rows of A are dependent over Fsy, and thus the
sequence a1, ..., ay contains a square dependence.

So let us suppose we are given a matrix A corresponding to a sequence of a;’s.
We begin by removing (extraneous) rows from A, , one at a time: that is, we
remove a row containing a 1 in its [-th column if there are no other 1’s in the /-th
column of the matrix (since this row cannot participate in a linear dependence).
This way we end up with a matrix B in which no column contains exactly one
1, and for which

r(Ay,) —rank(A,,) = r(B) — rank(B)

(since we reduce the rank by one each time we remove a row). Next we partition
the rows of B into minimal subsets, in which the primes involved in each subset
are disjoint from the primes involved in the other subsets (in other words, if two
rows have a 1 in the same column then they must belong to the same subset).
The i-th subset forms a submatrix, S;, of rank ¢;, containing r; rows, and then

r(B) —rank(B) = > (r; — £;).

%

We will define a power series f(n) for which we believe that

E (Zm —m) ~ f(n)m(yo) (19)

i
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when J = (n+ 0(1))Jp, and we can show that

lim f(n) =1, (20)
n—"qy
where 79 := e~ 7. Using the idea of section 3] we will deduce in section

that if (I9) holds then

S (i — ) ~ Fn)(o) (21)
holds with probability 1 — o(1), and hence ([I8) holds with probability 1 — o(1)
for J = (no + o(1))Jo. That is we can replace the upper bound 3/4 in Theorem
by e 7.

The simple model of section Bl suggests that A will not contain a square
dependence until we have ~ 7(yp) smooth or pseudo-smooth numbers; hence we
believe that one can replace the lower bound (7/4)e™” in Theorem [ by e~ 7.
This is our heuristic in support of the Conjecture.

6.1 The Submatrices

Let Mp denote the matrix composed of the set R of rows (allowing multiplicity),
removing columns of 0’s. We now describe the matrices Mg, for the submatrices
S; of B from the previous subsection.

For an r(M)-by-¢(M) matrix M we denote the (i, j)th entry e; ; € Fy for
1<i<r, 1 <5</l Welet

N(M) =Y ei;
i

denote the number of 1’s in M, and
A(M) == N(M) —r(M)— (M) + 1.

We denote the number of 1’s in column j by
mj = Z €ij
i

and require each m; > 2 We also require that M is transitive. That is, for any
J, 2 < j < /L there exists a sequence of row indices 41, .. .,%4, and column indices
Jis---,Jg—1, such that

€i1,1 = €ig,j = 1; anda Cipgn = Cipg1,dn = lfor1<h< g—1
In other words we do not study M if, after a permutation, it can be split into
a block diagonal matrix with more than one block, since this would correspond

to independent squares.

2 Else the prime corresponding to that column cannot participate in a square product.
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It is convenient to keep in mind two reformulations:

Integer version: Given primes p; < py < - - < py, we assign, to each row, a
squarefree integer
n; = H pji’j, for 1 <i <.
1<j<t

Graph version: Take a graph G(M) with r vertices, where v; is adjacent to
vr with an edge of colour p; if p; divides both n; and n; (or, equivalently,
ei,j = er,j = 1). Notice that M being transitive is equivalent to the graph G(M)
being connected, which is much easier to visualize.

Now we define a class of matrices My, where M € M, if M is as above, is
transitive and A(M) = k. Note that the “matrix” with one row and no columns
is in My (in the “integer version” this corresponds to the set with just the one
element, 1, and in the graph version to the graph with a single vertex and no
edges).

6.2 Isomorphism Classes of Submatrices

Let us re-order the rows of M so that, in the graph theory version, each new
vertex connects to the graph that we already have, which is always possible as
the overall graph is connected. Let

lr = #{j: there is an i < I with e; ; = 1},
the number of columns with a 1 in or before the I-th row, and
Ni = Z €ijs
i<I, j<¢
the number of 1’s up to, and including in, the I-th row. Define
Ar=Nr—1—40r+1,

so that A, = A(M).

Now Nj; = ¢; and therefore A; = 0. Let us consider the transition when we
add in the (I + 1)-th row. The condition that each new row connects to what
we already have means that the number of new colours (that is, columns with a
non-zero entry) is less than the number of 1’s in the new row, that is

lry1 =4y < Npyw — Np— 1,4

and so

A1 =Nrjp1 — 1 — Ui
ZNI—I—EI—F(N]_H—NI)—(KI_H—E])ZNI—I—EI—FIZAI.

Therefore
AM)=A, > Ay > -2 Ay > A =0. (22)
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6.3 Restricting to the Key Class of Submatrices

Two matrices are said to be “isomorphic” if one can be obtained from the other
by permuting rows and columns. In this subsection we estimate how many sub-
matrices of Ay, are isomorphic to a given matrix M, in order to exclude from
our considerations all those M that occur infrequently.

Proposition 3. Fix M € M. The expected number of submatrices S of A,
for which Mg is isomorphic to M is

nm(yo)t =" 1

| Autrows (M) ’

(23)
155<e VI

where v; = Y20 (m; — 1).

Note that we are not counting here the number of times a component S; is
isomorphic to M, but rather how many submatrices of A,, are isomorphic to
M.

Since 1 < 1, the quantity in (23]) is bounded if k¥ > 1, but is a constant times
7(yo) if k = 0. This is why we will restrict our attention to M € My, and our
goal becomes to prove that

E( > (i=£)) > mlw) (24)

it S, €M
in place of ([I9), where henceforth we write M = M.

Proof. The expected number of times we get a set of integers of the form
H1<j<£p;i'j times a go-smooth times a square, for i+ = 1,...,r, within our
sequence of integers a, ..., ay is

H v (z/ H1gjgz p?’j ,Y0)

’ 7 (25)

~ (i) | Orbitgows (M)

1<i<r

where by Orbitgrows(M) we mean the set of distinct matrices produced by per-
muting the rows of M, and ¥*(X,y) := #{n =mr?: P(m) <y < p(r)} which
is insignificantly larger than ¥ (X, y) (as we saw at the end of section 4.1). Since
r is fixed and J tends to infinity, we have

5 I
r rl’

r! = |Orbitrows(M)| - |Autrows (M)]

and we know thaﬂ

3 This is a consequence of the “Orbit-Stabilizer Theorem” from elementary group
theory. It follows from the fact that the cosets of Autrows(M) in the permutation
group on the r rows of M, correspond to the distinct matrices (orbit elements)
obtained by performing row interchanges on M.
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where Autrows(M) denotes the number of ways to obtain exactly the same
matrix by permuting the rows (this corresponds to permuting identical integers
that occur). Therefore (23] is

- 7 11 V() Ti<j<eps" s v0)
[Autrows (M)| T

1<i<r
1 JLD((E, yO) > " 1
~ mio 26
|Autrows (M )] ( z 1<1:[<z J ’ 20

where m; = > . e;; > 2, by (IZ). Summing the last quantity in (26]) over all
Yo < p1 < p2 < --- < pg, we obtain, by the prime number theorem,

(nm(yo))" ‘dvj

[AutRows (M)] Jyo<vr<vs<- < 1Sise Y log v;

0w (yo) 2 dt;

‘AutRows(M” /1<t1<t2<---<t14 1§1:[_§£ t;n]

using the approximation logv; ~ logyo (because this range of values of v; gives
the main contribution to the integral), and the fact that v ~ v;/logyo for v;
in this range. The result follows by making the substitution ¢; = v;/yo. O

6.4 Properties of M € M := M,

Lemma 2. Suppose that M € M := M,. For each row of M, other than the
first, there exists a unique column which has a 1 in that row as well as an earlier
row. The last row of M contains exactly one 1.

Proof. For each M € M, we have A; = 0 for each j > 0 by (22)) so that
€j+1 — éj = Nj+1 — Nj — 1.

That is, each new vertex connects with a unique colour to the set of previous
vertices, which is the first part of our resultf] The second part comes from noting
that the last row cannot have a 1 in a column that has not contained a 1 in an
earlier row of M. O

Lemma 3. If M € M then all cycles in its graph, G(M), are monochromatic.

Proof. If not, then consider a minimal cycle in the graph, where not all the edges
are of the same color. We first show that, in fact, each edge in the cycle has a
different color. To see this, we start with a cycle where not all edges are of the
same color, but where at least two edges have the same color. Say we arrange

* Hence we confirm that £ = N — (r — 1), since the number of primes involved is the
total number of 1’s less the unique “old prime” in each row after the first.
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the vertices vy, ..., vx of this cycle so that the edge (v1,v2) has the same color as
(vj,vj41), for some 2 < j < k — 1, or the same color as (vg,v1), and there are
no two edges of the same colour in-between. If we are in the former case, then
we reduce to the smaller cycle v, vs,...,v;, where not all edges have the same
color; and, if we are in the latter case, we reduce to the smaller cycle vy, v3, ..., Vg,
where again not all the edges have the same color. Thus, if not all of the edges
of the cycle have the same color, but the cycle does contain more than one edge
of the same color, then it cannot be a minimal cycle.

Now let I be the number of vertices in our minimal cycle of different colored
edges, and reorder the rows of M so that this cycle appears as the first I rows[
Then

Ny >2I+(;—1)=4;+1.

The term 21 accounts for the fact that each prime corresponding to a different
colored edge in the cycle must divide at least two members of the cycle, and the
£; — I accounts for the remaining primes that divide members of the cycle (that
don’t correspond to the different colored edges). This then gives A; > 1; and
thus by ([22) we have A(M) > 1, a contradiction. We conclude that every cycle
in our graph is monochromatic. O

Lemma 4. Every M € M has rank ¢(M).

Proof (by induction on ¢). For £ = 0, 1 this is trivial. Otherwise, as there are no
cycles the graph must end in a “leaf”; that is a vertex of degree one. Suppose
this corresponds to row r and color £. We now construct a new matrix M’ which
is matrix M less column ¢, and any rows that only contained a 1 in the ¢-th
column. The new graph now consists of my — 1 disjoint subgraphs, each of which
corresponds to an element of M. Thus the rank of M is given by 1 (corresponding
to the r-th row, which acts as a pivot element in Gaussian elimination on the
{-th column) plus the sum of the ranks of new connected subgraphs. By the
induction hypothesis, they each have rank equal to the number of their primes,
thus in total we have 1 + (¢ — 1) = ¢, as claimed. O

6.5 An Identity, and Inclusion-Exclusion Inequalities, for M
Proposition 4. If Mz € M then
> ()N = (M) — rank(M). (27)
SCR

MseM

Furthermore, if N > 2 is an even integer then

SCR,N(S)<N
MseM

5 This we are allowed to do, because the connectivity of successive rows can be main-
tained, and because we will still have A(M) = 0 after this permutation of rows.
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and if NV > 3 is odd then

S ()N < (M) — rank(M). (29)

SCR,N(S)<N
MseM

Proof (by induction on |R|). It is easy to show when R has just one row and
that has no 1’s, and when |R| = 2, so we will assume that it holds for all R
satisfying |R| < r — 1, and prove the result for |R| = r.

Let AV be the set of integers that correspond to the rows of R. By Lemma 3
we know that the integer in N/ which corresponds to the last row of M must
be a prime, which we will call py. Note that p, must divide at least one other
integer in \V, since My € M.

Case 1: py Divides at Least Three Elements from our Set

We partition R into three subsets: Ry, the rows without a 1 in the ¢-th column;
Ry, the rows with a 1 in the fth column, but no other 1’s (that is, rows which
correspond to the prime py); and Ra, the rows with a 1 in the ¢th column, as
well as other 1’s. Note that |R1| > 1 and |R1| + |R2| > 3 by hypothesis.

Write each S C R with Mg € M as Sy U S1 U Sy where S; C R;. If we fix Sy
and Sy with |Sa| > 2 then Sy U Sy € M if and only if Sy U S; U Sy € M for any
S1 C Ry. Therefore the contribution of all of these S to the sum in ([Z1) is

S1CRy

Now consider those sets S with |S2| = 1. In this case we must have [S1] > 1
and equally we have Sy U {p;} U Sy € M if and only if SoUS; US2 € M for any
S1 C Ry with |S1] > 1. Therefore the contribution of all of these S to the sum

in 27) is

(_1)N(So)+N(S2) Z (_1)|51| - (_1)N(SO)+N(52)((1 _ 1)|R1| —1)

S1CRy
[S1]>1

:(_1)N(Sou{m}usz)_ (31)

Regardless of whether [Sa2| =1 or |Sa| > 2, we get that if we truncate the sums
@) or @3I) to all those S1 C Ry with

N(S1) = [S1] < N = N(So) — N(S2),

then the total sum is < 0 if V is odd, and is > 0 if IV is even; furthermore, note
that we get that these truncations are 0 in two cases: If N — N (Sy) — N(S2) <0
(which means that the above sums are empty, and therefore 0 by convention),
orif N—N(Sp) —N(S2) > N(R;1) (which means that we have the complete sum
over all S1 C Ry).
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It remains to handle those S where |S2| = 0. We begin by defining certain
sets H; and T}: If the elements of Ry correspond to the integers hi, ..., h; then
let H; be the connected component of the subgraph containing h;, of the graph
obtained by removing all rows divisible by p, except h;. Let T; = H; U {p/}.
Note that if So = {h;} then So U {ps} US> C T; (in the paragraph immediately
above).

Note that if S has |S2| =0, then S = Sy C Tj for some j (since the graph of
S is connected), or S = Sy with |S| > 2. The contribution of those S = S, with
|S] > 2 to the sum in (7)) is

Y. D= - = (1 Ry ) = Ry - 1.

S1CRy
[S1]>2

Furthermore, if we truncate this sum to all those S; satisfying
N(S1) = [Si| < N,
then the sum is > |Ry| — 1 if N > 2 is even, and the sum is < |Ry| —1if N >3
is odd.
Finally note that if S C T; with Mg € M then either |S| = 0 or S =
So U{pe¢, hj} and therefore, combining all of this information,

k k

S DY S R 143 S (CDNE) = Ry =14 0T — 0(T))
SCR j=1 ScT; j=1

MseM MseM

by the induction hypothesis (as each |T};| < |M]). Also by the induction hypothe-

sis, along with what we worked out above for N even and odd, in all possibilities

for |S2] (i-e. |S2| = 0, 1 or exceeds 1), we have that for N > 3 odd,

k
> (DN <Ry =14+ (n(Ty) — UT));
SCR, N(S)<N j=1
MseM
and for N > 2 even,
k
> (“DNE) > Ry = 14+ (n(Ty) — UT)).
SCR, N(S)<N j=1

MseM

The Tj less the rows {py} is a partition of the rows of M less the rows {p¢}, and

SO
D (r(Ty) = 1) = (M) = |Ri.

J
The primes in 7} other than p, is a partition of the primes in M other than py,
and so

S(UT;) 1) = 6(M) - 1.

J

Combining this information gives (1), (28), and 23]).
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Case 2 : py Divides Exactly Two Elements from our Set

Suppose these two elements are n, = py and n,_1 = pgq for some integer q. If

¢ = 1 this is our whole graph and (27]), (28) and 29)) all hold, so we may assume
g > 1. If nj # g for all j, then we create M, € M with r — 1 rows, the first r — 2
the same, and with n,_; = ¢. We have

N(M)=N(M) -2, r(My)=r(M)—1, and ¢(M;) =4¢(M) — 1.

We claim that there is a 1-1 correspondence between the subsets S C R(M)
with Mg € M and the subsets T C R(M;) with (M;)r € M. The key observa-
tion to make is that py € S (ie row r) if and only if p;qg € S (ie row r — 1), since
Mg € M. Thus if rows r — 1 and r are in S then S corresponds to T' (ie T' = S7),
which we obtain by replacing rows r — 1 and r of S by row r — 1 of T" which
corresponds to ¢. Otherwise we let S = T'. Either way (—1)N®) = (=1)N(T) and
S0

Y EDYE = 3 ()Y = (M) — (M) = (M) — (M),
SCR TCR(My)
MseM (My)rEM

by the induction hypothesis. Further, we have that for N even,

S ()N = ST (C)YD > () — o).
SCR,N(S)<N TCR(M1),N(T)<N—2
MseM (Ml)TEM

The analogous inequality holds in the case where N is odd. Thus, we have that

@7, 28) and @3)) all hold.

Finally, suppose that n; = ¢ for some j, say n,_» = q. Then ¢ must be prime
else there would be a non-monochromatic cycle in M € M. But since prime ¢
is in our set it can only divide two of the integers of the set (by our previous
deductions) and these are n,_o and n,_1. However this is then the whole graph
and we observe that (1), [28)), and 29]) all hold. O

6.6 Counting Configurations

We partitioned B into connected components S1,...,S,. Now we form the ma-
trices By, the union of the S; € My, for each k£ > 0, so that

r(B) —rank(B) = > r(Bj) — rank(B), (32)
k>0

and
r(Bi) —rank(Bg) = > r(S;) — rank(S;).
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More importantly
> r(M;) — rank(M;)
j: MjeMo
= > > (VI = X )V, (33)

j: MjeMo SCR(M;) SCR(Bo)
MgseM MseM

by Proposition @l If k > 1 then there are a bounded number of S; isomorphic
to any given matrix M € My, by Proposition Bl and so we believe that these
contribute little to our sum (B2)). In particular we conjecture that

S (v k(M) = > (<)) = o (yo))

k>13j: MjEM;, SCR(M;)
MseM

with probability 1 — o(1). Hence the last few equations combine to give what
will now be our assumption.

Assumption

r(B) —rank(B) = Z (=N 4 o(x(yo)). (34)
SCR(B)
MgseM

By combining ([23)), (34)), and the identity
¢
S I -11,.-
oE€S, j=1 Z i=j Co(i)  j=1""

(here Sy is the symmetric group on 1, ..., ¢, and taking ¢; = m; — 1) we obtain,
by summing over all orderings of the primes,

E(r(B) — rank(B)) ~ f(n)m(yo) (35)
where
- (—1)N() . nr (M)
f(??) = M;/l* ‘AutCOls<M)‘ . |AUtRows(M)‘ Hﬁ:l(m]‘ B 1) s (36)

assuming that when we sum and re-order our initial series, we do not change
the value of the sum. Here Autcois(M) denotes the number of ways to obtain
exactly the same matrix M when permuting the columns, and M* = M/ ~
where two matrices are considered to be “equivalent” if they are isomorphic.

6.7 Husimi Graphs

All of the graphs G(M), M € M are simple graphs, and have only monochro-
matic cycles: notice that these cycles are subsets of the complete graph formed
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by the edges of a particular colour (corresponding to the integers divisible by
a particular prime). Hence any two-connected subgraph of G(M) is actually a
complete graph: This is precisely the definition of a Husimi graph (see [I1]), and
so the isomorphism classes of Husimi graphs are in one-to-one correspondence
with the matrices in M*.

Husimi graphs have a rich history,inspiring the combinatorial theory of species,
and are central to the thermodynamical study of imperfect gases (see [11] for
references and discussion).

Lemma 5. If G is a Husimi graph then
Aut(G) =2 Autrows(M) x Autces(M). (37)

Proof. If o € Aut(G) then it must define a permutation of the colors of G; that
is an element 7 € Autcos(M). Then 7710 € Aut(G) is an automorphism of G
that leaves the colors alone; and therefore must permute the elements of each
given color. However if two vertices of the same color in G are each adjacent
to an edge of another color then permuting them would permute those colors
which is impossible. Therefore 7~ 'o only permutes the vertices of a given color
which are not adjacent to edges of any other color; and these correspond to
automorphisms of the rows of M containing just one 1. However this is all of
Autrows (M) since if two rows of M are identical then they must contain a single
element, else G would contain a non-monochromatic cycle. O

Let Hu(j2,js,...) denote the set of Husimi graphs with j; blocks of size i for
each 7, on

r=1+> (i—1)j (38)
i>2
vertices, with £ = ", j; and N(M) = >, ij;. (This corresponds to a matrix M
in which exactly j; columns contain precisely 7 1’s.) In this definition we count
all distinct labellings, so that

d
Hu(anj3a"') = )
2 |Au(@)

where the sum is over all isomorphism classes of Husimi graphs G with exactly
Ji blocks of size i for each i. The Mayer-Husimi formula (which is (42) in [I1])
gives

Hu(ja, js,...) = Hi>22€i_—11))!!jiji!) ey (39)

and so, by (6), (37) and the last two displayed equations we obtain

£—2

= _1\rt+e-1 r .
fn) = Ahg;o (=1 [Tiss (i — 1) (i — 13ty (40)

J2+j3+---<oo
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6.8 Convergence of f(n)

In this section we prove the following result under an appropriate (analytic)
assumption.

“Theorem”. The function f(n) has radius of convergence e~7, is increasing in
[0,e77), and lim,_(.—~)- f(n) = 1.

So far we have paid scant attention to necessary convergence issues. First note

the identity
o0 C].gi
. — K3
= (Y0)- X I )
i=1 kik2,...>0 i>1
k1+ka4---<oo
which converges absolutely for any sequence of numbers ¢q, g, ... for which |e1 |+
|ca| + - -+ converges, so that the terms in the series on the right-hand-side can
be summed in any order we please.
The summands of f(n), for given values of r and /, equal (—1)"+¢=1pt=2y"
times
) R (42)
[Tiso((@ = 1)V (i = 1) ;1)

 jaga20 =
Eizzﬁ:gv 2122(1_1)31‘,:7‘—1

which is exactly the coefficient of ¢"~! in

1 £2 £ ¢
t
z!<+2-2!+3-3!+ )

and so is less than 7¢/¢! where 7 = 251 1/(5 - j!) ~ 1.317902152. Note that if
r > 2then 1 < ¢ < r — 1. Therefore the sum of the absolute values of all of the
coefficients of " in f(n) is less than

0 r r
2T r—2T (eT)
> o0 <UL < s
2<0<r—1
The first inequality holds since 7 > 1, the second by Stirling’s formula. Thus
f(n) is absolutely convergent for |n| < po := 1/(er) ~ 0.2791401779. We can
therefore manipulate the power series for f, as we wish, inside the ball |n| < po,

and we want to extend this range.

Let o T
amy =- T [ <
= 0 t
The identity (@I implies that the coefficient of t" =% in exp(rA(nt)) is
Z (— 1)+ 1plyr=1
[Tiso (i = D)Vi (i = 1)7: ;1) 7

. J2,J35---
J2+2j3+3jat-=r—1
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so that
Z coeff of t"~1 in exp(rA(nt))

f'(n) = (43)

r
r>1

We will now obtain a functional equation for f’ using Lagrange’s Inversion
formula:

Lagrange’s Inversion Formula. If g(w) is analytic at w = 0, with g(0) = a
and ¢’(0) # 0, then

-5 (4 ()

is the inverse of g(w) in some neighbourhood around a (thus, h(g(w)) = 1).

(z=a)

7!

w=0

If g(w) = w/p(w), where p(w) is analytic and non-zero in some neighbourhood

of 0, then
> cr12"
TR
r=1
is the inverse of g(w) in some neighbourhood around 0, where ¢; is the co-
efficient of w’ in p(w)’*!. Applying this with p(w) = A1) we find that
g(w) = we™A) has an inverse h(z) in a neighbourhood, I", around 0 where

a1y = 3 el of 7 i e (rAGE)) _
r>1 r
We will assume that the neighbourhood I includes 1. Therefore, since
1=g(h(1)) = h(l)e*A("h(l)) — f’(n)eﬂ‘l(nf’(n))7

we deduce that
f(n) = A (m) (44)

(Note that this can only hold for 7 in some neighborhood of 0 in which the power
series for f’(n) converges.) Taking the logarithm of (@) and differentiating we

1—e= T

get, using the formula A'(T') = 7%,

f//(n) _ 1 / 1- e_nf/(n)
frimy = O

so that f'(n) = (nf( N —=nf"(n) = (nf'(n)) e ' Integrating and using
the facts that f(0) = 0 and f/(0) = 1, we have

fln)=1—e "0, (45)

We therefore deduce that

k
nf(n) = —tog(1 — f) = 3 T (16)



Running Time Predictions for Factoring Algorithms 27

Lemma 6. The coe cients of f(n) are all non-negative. Therefore |f(z)] <
f(|z|) so that f(z) is absolutely convergent for |z| < R if f(n) converges for
0 <n < R. Also all of the coe cients of f’(n) are non-negative and f'(0) =1
so that f/(n) > 1 for 0 <n < R.

Proof. Write f(n) = >, ~,arn". We prove that a, > 0 for each r > 1, by in-
duction. We already know that a; = 1 so suppose r > 2. We will compare the
coefficient of 7" on both sides of [@6]). On the left side this is obviously ra,. For
the right side, note that the coefficient of ™ in f(n)* is a polynomial, with posi-
tive integer coefficients (by the multinomial theorem), in variables a1, ..., @41k
for each k > 1. This is 0 for k > r, and is positive for 2 < k < r by the induc-
tion hypothesis. Finally, for r = 1, the coefficient is a,.. Therefore we have that
ra, > a, which implies that a, > 0 as desired. O

Our plan is to determine R, the radius of convergence of f(7), by determining
the largest possible Ry for which f/(n) is convergent for 0 < n < Rj. Then
R=R;.

Since f’ is monotone increasing (as all the coefficients of f’ are positive), we
can define an inverse on the reals > f/(0) = 1. That is, for any given y > 1, let n,
be the (unique) value of > 0 for which f’(n) = y. Therefore Ry = lim,_,oo 7.

We claim that the value of f/(n) is that unique real number y for which
By, (y) := A(ny) —logy = 0. By ([@4) we do have that B, (f’(n)) = 0, and this
value is unique if it exists since B, (y) is monotone decreasing, as

By (y) =nA'(ny) —1/y=—e"/y <0.

This last equality follows since A’(T) = (1 —e~1)/T. Now A'(T) > 0 for T > 0,
and so A(t) > 0 for all £ > 0 as A(0) = 0. Therefore B, (1) = A(n) > 0, and
so, remembering that B, (y) is monotone decreasing, we have that a solution y
exists to By (y) := A(ny) —logy = 0 if and only if B, (c0) < 0. Therefore R; is
precisely that value of n = 7; for which B, (c0) = 0. Now

Y , Yy e—nt
B,(y) = By(1) +/ Bn(t)dt = A(n) —/ ; dt.
1 1
so that
00 o=y
By(oe) = At~ [ Vay
1 Yy
Therefore
X oMy m m (1 — e~V
/ M = A = A©O) + [ A'w)d :/ (1=e™) gy
1 Y 0 0 v
so that

71 0o —v 1 )
/ dv _ / e’ / (1—e )dv .

(as is easily deduced from the third line of (6.3.22) in [I]). Exponentiating we
find that R; = m = e~ Y = .561459....

Finally by ({#3) we see that f(n) < 1 when f’(n) converges, that is when
0<n<mno,and f(n) —Lasn—1y .
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6.9 From Expectation to Probability

One can easily generalize Proposition 2 to prove the following result, which
implies that if E(r(B) — rank(B)) > (1 4 2¢)m(yo) then

r(B) —rank(B) > (1 + €)m(yo) with probability 1 — o(1).
Proposition 5. If M € M then
#{S C Ay, : Ms =M} ~EF#{S C Ay, : Mg~ M})
with probability 1 — o(1), as x — co.

Hence, with probability 1 — o(1) we have, assuming (34]) is true, that

3 T(Mj)—rank(Mj)N]E( 3 T(Mj)—rank(Mj)>

j: MjeM j: M;eM

as * — oo, which is why we believe that one can take J = (e77 + o(1))Jo(x)
with probability 1 — o(1).

7 Algorithms

7.1 The Running Time for Pomerance’s Problem

We will show that, with current methods, the running time in the hunt for the
first square product is dominated by the speed of finding a linear dependence in
our matrix of exponents:

Let us suppose that we select a sequence of integers ai,as,...,ay in [1,n]
that appear to be random, as in Pomerance’s problem, with J < Jy. We will
suppose that the time taken to determine each a;, and then to decide whether
aj is yo-smooth and, if so, to factor it, is < y(()lfe)/log 18% steps (note that the
factoring can easily be done in exp(O(y/logyologlogyg)) steps by the elliptic
curve method, according to [3], section 7.4.1).

Therefore, with probability 1 — o(1), the time taken to obtain the factored
integers in the square dependence is < yé“/ loglogyo 1., ®).

In order to determine the square product we need to find a linear dependence
mod 2 in the matrix of exponents. Using the Wiedemann or Lanczos methods
(see section 6.1.3 of [3]) this takes time O(m(yo)?u), where p is the average
number of prime factors of an a; which has been kept, so this is by far the
lengthiest part of the running time.

7.2 Improving the Running Time for Pomerance’s Problem

If instead of wanting to simply find the first square dependence, we require an
algorithm that proceeds as quickly as possible to find any square dependence
then we should select our parameters so as to make the matrix smaller. Indeed if
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we simply create the matrix of y-smooths (without worrying about large prime
variations) then we will optimize by taking

m(y)
V(z,y)/z

that is the expected number of a;’s selected should be taken to be roughly the
running time of the matrix setp, in order to determine the square product. Here
L, is as in the previous section, and so we expect that u is roughly

]. fL' 7
A DI DIEED Dtids

n<z,P(n)<yp<y: p|n p<y

= 7(y)’u, (47)

1—(x

Y ~ g
=P (1-— a) logy loglogy
by ([2)), the prime number theorem and (II]). Hence we optimize by selecting
y = y1 so that p(uq) < (loglogyi)/y1, which implies that
Y1 = yl (14o0(1 ))/loglog.’p7
by Lemma [Il which is considerably smaller than yo. On the other hand, if Jy is
the expected running time, 7(y1)/(¥(x,y1)/x) then

y1/p(u1) ( ug log ug ) (140(1))/(log log z)°
Ji/Jg ~ = ex 1+ o0(1 =
U o tptue) — P W 10510502 ) =40

by the prime number theorem, (@), and (22) in the proof of Lemma 2.3 in [4].

7.3 Smooth Squares

In factoring algorithms, the a; are squares mod n (as explained at the begin-
ning of section 1), which is not taken into account in Pomerance’s problem. For
instance, in Dixon’s random squares algorithm one selects by, bs,...,by € [1,7]
at random and lets a; be the least residue of b? (mod n). We keep only those
a; that are y-smooth, and so to complete the analysis we need some idea of the
probability that a y-smooth integer is also a square mod n. Dixon [5] gives an
(unconditionally proven) lower bound for this probability which is too small by
a non-trivial factor. We shall estimate this probability much more accurately
though under the assumption of the Generalized Riemann Hypothesis.

Theorem 2. Assume the Generalized Riemann Hypothesis and let »n be an inte-
ger with smallest prime factor > 7, which is > 23“(") < (where w(n) denotes the
number of distinct prime factors of n). For any n > = > n'/4t%, the proportion
of the positive integers a < x where « is a square mod n and coprime to n, which
are y-smooth, is ~ ¥ (z,y)/x.

We use the following result which is easily deduced from the remark following
Theorem 2 of [9]:
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Lemma 7. Assume the Generalized Riemann Hypothesis. For any non-principal
character x (mod n), and 1 <z < n we have, uniformly,

U (z,y)(logn)?
Y @) - Eota)] « T
a<lx a<lx \/y
a y—smooth
Proof (of Theorem ). Let M (z) be the number of a < 2 which are coprime
with n, let N(x) be the number of these a which are a square mod n, and let
N(x,y) be the number of these a which are also y-smooth. Then

(vt 220 - (50~ ) -

) : { <a>} 1

= - 1+ _
a<w,(a,n)=1 a<z pln 2 p Qw(n)
a y—smooth  (a,n)=1

a a z,y)(logn)?
:2w1(n)d§|;ﬂ2(d) > (d>_ > (d) <" y\)/(;g :

a<z,(a,n)=1 <z

a
d#1 a y—smooth (a,n)=1

by Lemma [ Now Burgess’s theorem tells us that N(z) — M(z)/2¢(™ < 2'~¢
if z > n'/4*® the prime number theorem that w(n) < logn/logy = o(log ),
and () that ¥(z,y) > z'~/? as y > L. Hence N(z,y) ~ ¥(n,y)/2¢™. The
number of integers a < x which are coprime to n and a square mod n is ~
((n)/n)(x/2¢M™), and ¢(n) = n(1 4+ O(1/y))*™ ~ n, so the result follows. O

7.4 Making the Numbers Smaller

In Pomerance’s quadratic sieve the factoring stage of the algorithm is sped up
by having the a; be the reduced values of a polynomial, so that every p-th a;
is divisible by p, if any a; is. This regularity means that we can proceed quite
rapidly, algorithmically in factoring the a;’s. In addition, by an astute choice of
polynomials, the values of a; are guaranteed to be not much bigger than +/n,
which gives a big saving, and one can do a little better (though still bigger than
v/n) with Peter Montgomery’s “multiple polynomial variation”. For all this see
section 6 of [3].

8 Large Prime Variations

8.1 A Discussion of Theorem 4.2 in [4] and Its Consequences

Define exp(z) := Zf;é 27 /4! so that limy_ .o expy(z) = exp(z), and

gt 11—t
Ay (2) = /1 dt so that. lim Ay(z) = A(z) = /0 Car,
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Recursively, define functions v, ar.x by vo,nm,k(u) := u and

Ym+1,M,k (1) = u expy [An (Ym,a,k ()]

for m =0, 1, 2, ... . Note that vy, as,x(u) is increasing in all four arguments.
From this it follows that v, ark(u) increases to yar i (u) as m — oo, a fixed point
of the map z — wexpy (A (z)), so that

Yk () = u expy, [An (Var,k(w))] - (48)

We now establish that v (u) < oo except perhaps when M = k = co: We have
0 < Aup(z) <logM for all z, so that u < varr(u) < Mu for all u; in particular
Yarp(w) < oo if M < oco. We have A(z) = logz + O(1) so that if v x(u) is
sufficiently large, we deduce from (@) that Voo x(u) ~ u(logu)*~1/(k —1)!; in
particular o k(u) < co. As M,k — oo, the fixed point yasx(u) increases to
the fixed point v(u) of the map z — ue’(*), or to oo if there is no such fixed
point, in which case we write v(u) = co. By comparing this with ([@4)) we see
that y(u) = uf’(u). In [4] we show that this map has a fixed point if and only if
u < e~ 7. Otherwise v(u) = oo for u > e~7 so that [ 7(u") du = oo > 1 for any
n>e 7.

One might ask how the variables m, M, k,u relate to our problem? We are
looking at the possible pseudosmooths (that is integers which are a yo-smooth
times a square) composed of products of a; with j < uJy. We restrict our
attention to a; that are Myg-smooth, and which have at most £ prime factors
> yo. In the construction of our hypergraph we examine the a; selecting only
those with certain (convenient) properties, which corresponds to m = 0. Then we
pass through the a; again, selecting only those with convenient properties given
the a; already selected at the m = 0 stage: this corresponds to m = 1. We iterate
this procedure which is how the variable m arises. The advantage in this rather
complicated construction is that the count of the number of pseudosmooths

created, namely
7
~ m(Yo) / o, 4 (1) du ,
O u

increases as we increase any of the variables so that it is relatively easy to
deal with convergence issues (this is Theorem 2 in [4]). This technique is more
amenable to analysis than the construction that we give in section [6 because
here we use the inclusion-exclusion type formula (B0 to determine f(n), which
has both positive and negative summands, and it has proved to be beyond us to
establish unconditionally that this sum converges.

Note that as m — oo we have that the number of pseudosmooths created is

~ 7(yo) - /On Yark (1) du ; (49)

u

hence if the value of this integral is > 1 then we are guaranteed that there is a
square product. If we let M and k go to co then the number of pseudosmooths

created is " ()
U
~ 7 (yo) - / Y g
O u
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The upper bound in the Conjecture follows. In terms of what we have proposed
in section [6 we have now shown that the number of pseudosmooths created is
indeed ~ f(n)7(yo)-

We remarked above that this integral is an increasing function of 1 and, in
fact, equals 1 for n = e™7. Hence if n > e~7 then we are guaranteed that there is
a square product. One might expect that if 7 = e~ + € then we are guaranteed
C(e)m(yo) square products for some C(e) > 0. However we get rather more than
that: if n > €™ then [ W(U") du = oo (that is f(n) diverges) and hence the
number of square products is bigger than any fixed multiple of 7(yo) (we are
unable to be more precise than this).

8.2 Speed-Ups

From what we have discussed above we know that we will find a square product
amongst the yo-smooth a;’s once J = {1 + o(1)}.Jo, with probability 1 — o(1).
When we allow the a;’s that are either yo-smooth, or yg-smooth times a single
larger prime then we get a stopping time of {c; 4+ o(1)}.Jy with probability
1 — o(1) where ¢; is close to 3/4. When we allow any of the a;’s in our square
product then we get a stopping time of {e~7 +o(1)}Jy with probability 1 —o(1)
where e™? = .561459. ... It is also of interest to get some idea of the stopping
time for the k-large primes variations, for values of k other than 0,1 and oco. In
practice we cannot store arbitrarily large primes in the large prime variation,
but rather keep only those a; where all of the prime factors are < Myy for a
suitable value of M — it would be good to understand the stopping time with the
feasible prime factors restricted in this way. We have prepared a table of such
values using the result from [4] as explained in section B} First we determined a
Taylor series for s, (u) by solving for it in the equation ([@S]). Next we found the
appropriate multiple of 7(yp), a Taylor series in the variable 1, by substituting
our Taylor series for vy 1 (u) into (A9). Finally, by setting this multiple equal to
1, we determined the value of 7 for which the stopping time is {n+o(1)}Jy with
probability 1 —o(1), when we only use the a; allowed by this choice of k and M
to make square products.

M =00 M =100 M =10
1 1 1
.7499 L7517 1677
.6415 .6448 6745
.5962 .6011 .6422
5764 5823 .6324
567 575 .630

T W N~ O

The expected stopping time, as a multiple of Jy.

What we have given here is the speed-up in Pomerance’s problem; we also want
to use our work to understand the speed-up of multiple prime variations in actual
factoring algorithms. As dicussed in section [{] we optimize the running time by
taking y; to be a solution to ([@7): If we include the implicit constant ¢ on the
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left side of ([7), then this is tantamount to a solution of h(u.) = log(cloglogy)
where h(u) := ! logz 4 log p(u). For u &~ u, we have

) = ) (logp(u) _pl(w)) _
W(w)=-"" (u p(u)> 1+ o0(1)

by (51), (56) and (42) of section IIL5 of [20]. One can show that the arguments
in [4] which lead to the speed-ups in the table above, work for y; just as for yo;
so if we use a multiprime variation to reduce the number of a;’s required by a
factor n (taken from the table above), then we change the value of h(u) by logn,
and hence we must change u to v’ := u — {1 4+ o(1)}logn. The change in our
running time (as given by (@) will therefore be by a factor of

2(u —u') logax>

uu’

B {24+ 0(1)}lognlogz\ 1 _
o u? = (log ) {1+o(} log(1/n)

2 2
~ v w =exp

with a little more care, one can show that this speed-up is actually a factor

2et + o(1) log(1/m)
log zlog log x '

8.3 A Practical Perspective

One approaches Pomerance’s question, in practice, as part of an implementation
of a factoring algorithm. The design of the computer, the language and the
implementation of the algorithm, all affect the running time of each particular
step. Optimally balancing the relative costs of the various steps of an algorithm
(like the quadratic sieve) may be substantially different as these environmental
factors change. This all makes it difficult to analyze the overall algorithm and
to give one definitive answer.

The key parameter in Pomerance’s problem and its use in factoring algorithms
is the smoothness parameter y = y1: We completely factor that part of a; which is
y-smooth. Given the origin of the a;’s it may be possible to do this very efficiently
using a sieve method. One may obtain a significant speed-up by employing an
“early abort” strategy for the a; that have a particularly small yo-smooth part,
where y is substantially smaller than y = y;. The size of y also determines the
size of the matrix in which we need to find a linear dependence — note though
that the possible size of the matrix may be limited by the size of memory, and
by the computer’s ability to handle arrays above a certain size.

Suppose that a; equals its y-smooth part times b;, so that b; is what is left
after the initial sieving. We only intend to retain a; if b; = 1, or if b; has no
more than k prime factors, all of which are < My. Hence the variables M and
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k are also key parameters. If M is large then we retain more a;’s, and thus
the chance of obtaining more pseudosmooths. However this also slows down the
sieving, as one must test for divisibility by more primes. Once we have obtained
the b; by dividing out of the a; all of their prime factors < y we must retain
all of those b; < (My)*. If we allow k to be large then this means that only
a very small proportion of the b; that are retained at this stage will turn out
to be My-smooth (as desired), so we will have wasted a lot of machine cycles
on useless a;j. A recent successful idea to overcome this problem is to keep only
those a; where at most one of the prime factors is > M’y for some M’ that is
not much bigger than 1 — this means that little time is wasted on a; with two
“large” prime factors. The resulting choice of parameters varies from program to
program, depending on how reports are handled etc. etc., and on the prejudices
and prior experiences of the programmers. Again, it is hard to make this an
exact science.

Arjen Lenstra told us, in a private communication, that in his experience of
practical implementations of the quadratic sieve, once n and y are large enough,
the single large prime variation speeds things up by a factor between 2 and 2.5,
and the double large prime variation by another factor between 2 and 2.5 (see,
e.g. [13]), for a total speed-up of a factor between 4 and 6. An experiment with
the triple large prime variation [I2] seemed to speed things up by another factor
of around 1.7.

Factorers had believed (see, e.g. [I3] and [3]) that, in the quadratic sieve,
there would be little profit in trying the triple large prime variation, postulating
that the speed-up due to the extra pseudosmooths obtained had little chance
of compensating for the slowdown due to the large number of superfluous a; s
considered, that is those for which b; < (My)? but turned out to not be My-
smooth. On the other hand, in practical implementations of the number field
sieve, one obtains a; with more than two large prime factors relatively cheaply
and, after a slow start, the number of pseudosmooths obtained suddenly increases
very rapidly (see [6]). This is what led the authors of [12] to their recent surprising
and successful experiment with the triple large prime variation for the quadratic
sieve (see Willemien Ekkelkamp’s contribution to these proceedings [7] for further
discussion of multiple prime variation speed-ups to the number field sieve).

This practical data is quite different from what we have obtained, theoret-
ically, at the end of the previous section. One reason for this is that, in our
analysis of Pomerance’s problem, the variations in M and k simply affect the
number of a; being considered, whereas here these affect not only the number of
a;j being considered, but also several other important quantities. For instance,
the amount of sieving that needs to be done, and also the amount of data that
needs to be “swapped” (typically one saves the a; with several large prime factors
to the disk, or somewhere else suitable for a lot of data). It would certainly be
interesting to run experiments on Pomerance’s problem directly to see whether
our predicted speed comparisons are close to correct for numbers within compu-
tational range.
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Abstract. The general binary quadratic Diophantine equation
ar’ +bzy+cyi +dr+ey+ f=0

was first solved by Lagrange over 200 years ago. Since that time little
improvement has been made to Lagrange’s technique. In this paper we
show how to reduce this problem to that of determining whether or not
an ideal of a certain quadratic order is principal and if so exhibiting
a generator of that ideal. In the difficult case of the discriminant A of
this order being positive, we develop a Las Vegas algorithm for solving
the principal ideal problem that executes in expected time bounded by
O(AY+¢), whereas the complexity of Lagrange’s (unconditional) tech-
nique for solving this problem is O(AY/2%<),

1 Introduction

We will be concerned with the Diophantine equation
az? +bxy 4+ ey’ +dr +ey+ f =0, (1.1)

where it is required to find integral values of z and y, given a,b,c,d,e, f € Z. A
method for solving this equation was given over 200 years ago by Lagrange [17],
and this method has not been improved significantly since that time. The reason
for this is that Lagrange’s method works perfectly well as long as the coefficients
in (II) do not get very large. However, if we put H = max{|al, |b], |c|,|d|, |e], | f|},
Kornhauser [16] has shown that there is an infinite collection of equations of the
form () having integer solutions, but none with max{|z|, |y|} < 2#/5. Thus it
is possible for solutions of (I.]) to be very large, even when H is only moderately
large. For such cases Lagrange’s method will likely be far too slow to produce
the solutions of (LT]). The purpose of this paper is to develop a faster method
for dealing with this equation; in the process of doing this it will be necessary
to investigate techniques for performing arithmetic efficiently in real quadratic
fields.
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If we put D = b? — 4ac, E = bd — 2ae, F = d?> — 4af, Lagrange realized that
([T could be written as

DY? = (Dy + E)*> + DF — E?, (1.2)

where Y = 2az + by + d. Clearly, if we put N = E? — DF = —4a(ebd + 4acf —
ae? — fb? — cd?), then (L) can be written as

X?-DY? =N, (1.3)

where X = Dy + E. Thus, if we have any solution X,Y of ([3) such that there
are integers x, y for which

X =Dy+ Fand Y = 2azx + by + d, (1.4)

we get a solution z,y of ().

Before proceeding any further, we will examine several cases of (L3]). If D < 0,
then (3] can only have a finite number of solutions, and these can be determined
by making use of the algorithm of Cornacchia (see, for example, Nitaj [21]). If
D =0or D > 0 is a perfect integral square, the problem of solving (I3]) reduces
to that of factoring N, and once again there can only be a finite number of
solutions of ([L3). Also, if D > 0 and N = 0, (I3)) can only have a solution if
D is a perfect integral square. In this case we get an infinitude of solutions of
([T3), but they are very easily characterized.

There remains, then, the case of N # 0, D > 0 and D not a perfect integral
square. In this case ([ILI)) has an infinitude of solutions, if it has at least one. If
([C3) has a solution X,Y and G = ged(X,Y), we must have G? | N and ([L3)
reduces to

X"? - DY"? =N/, (1.5)

where X' = X/G, Y’ =Y/G, N' = N/G?. Thus, in order to solve (I3 we can
find all the possible square divisors G? of N and solve (3] for each value of N’ =
N/G?. We may, therefore, with no loss of generality assume that ged(X,Y) =
1 in ([C3). Such solutions are called primitive. Now suppose that X,Y is any
primitive solution of (I3]). Let ¢, u denote the fundamental solution of the Pell
equation

T? - DU? = 1.

If
X, +Y,VD=(X+YVD)(t+uVD)" (necZ), (1.6)

we see that X,,,Y,, is also a primitive solution of (L3). Indeed, as Lagrange was
well aware, there exists a finite set S made up of ordered pairs (X, Y") of solutions
X, Y of [I3)) such that if X', Y is any solution of (L3)), then X' = X,,, Y’ =Y,
for some n € Z and some (X,Y) € S. Thus, after having found S, the problem
reduces to that of identifying for each (X,Y") € S those values of n for which

(1.7)

X, =FE (mod D),
Y, =b0(X, - FE)/D+d (mod 2a).
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We will now rewrite (1) as

{ X,=FE (mod D), 18)

DY, =bX,, —bE + Dd (mod 2aD).
Lagrange noted that as there are only a finite number of possible values of
(t+uvD)" (mod 2aD),
there must be a least positive integer r for which
(t+uVvD) =1 (mod 2aD).

Thus, (L) yields values of X,, and Y, satisfying (L)) if and only if it does so
when n is replaced by n + r. It follows that in order to test all the solutions of
([3) produced by (L6 to see if they satisfy (L), it suffices to examine only
those for which 0 < n <r —1.

Lagrange’s method compels us to test up to r values of n to determine those
congruence classes of n (mod r) for which we produce solutions of (Il from
(LH). Unfortunately, this could be a very inefficient process when r is large,
which is frequently the case when aD is.

2 Another Approach

If we define
T, + U VD = (t+ uVD)"  (n € Z), (2.1)

we see from (@) that
X, =XT,+DYU,, Y,=YT,+ XU,.

Since we require that X,, = F' (mod D), we must have 7,,X = E (mod D). By
&) it is clear that T, =" (mod D) and since > =1 (mod D), we get

T, =t (mod D)
when n = € (mod 2), € € {0,1}. Thus, if neither X = E (mod D) nor tX = F
(mod D) holds, then (6] will yield no solutions of ([LT]).
Suppose that 7, X = E (mod D). By (L)) we also require that
dD — bE = (DY — bX)T, + (DX — bDY)U, (mod 2aD).  (2.2)
From (4] we can deduce that

X —bY = Dy + E — 2abx — b*y — bd
= —2a(cy + e + bx).



40 R.E. Sawilla, A.K. Silvester, and H.C. Williams

Thus, another necessary condition for (L6)) to produce solutions to (L)) is that
2a | X —bY. (2.3)
Since b = D (mod 2a), this means that 2a | DY — bX. We next observe that
dD — bE = 2a(eb — 2dc).
Hence, we can now put (22)) in the form

dD —bE (DY—bX) (DX—bDY

2a 2a 2a > Un  (mod D).

By &I) we have U, = nut"~! (mod D); hence, ([Z2)) can be rewritten as

dD —bE _ (DY —bX\ , (DX —bDY
9y = < o ) t" + nut < » ) (mod D).  (2.4)

Since t2 =1 (mod D), this becomes a linear congruence in the unknown 7.
However, by (23) we have D | (DX — bDY)/2a. Thus (Z4) can hold for all

even n only if

dD — bE — DY +bX

0 (2.5)

D
and for all odd n only if

dD —bE — DYt + bXt

D ’ oy (2.6)
Thus, it is no longer necessary to search for all possible values of n up to r. We
need only check to see that (23) holds. If so and (Z3)) holds, then (L] produces
solutions of (LI)) for any even n and if ([ZG]) holds then (L6) produces solutions
of () for any odd n. If none of these conditions holds, then (6] produces no
solutions of (IIJ). This approach is another version of an idea of Legendre as

modified by Dujardin (see Dickson [6, p. 416]).

3 Solutions of X2 — DY?2 =N

We next turn our attention to the problem of finding all the primitive pairs
(X,Y) for which (@) will yield all of the solutions of

X?2-DY?=N.

As we have already mentioned there are only a finite number of such pairs. There
may be none at all. We first notice that if S? | ged(D, N), then S | X; thus, if
we put X = X/S, D' = D/S? N’ = N/S?, then ([3)) becomes

X?-DY*=N'.

We may therefore assume with no loss of generality that ged(D, N) is squarefree.
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In order to proceed further we will make use of some results from the theory
of real quadratic number fields and some associated algorithms. Much of this
material can be found in Williams and Wunderlich [28], Jacobson et al. [T2JI3//11]
and de Haan et al. [§]. Let O be the order Z[v'D] and K be the quadratic
number field Q(v/D). The discriminant of O is A = 4D and we put w = v/D.
Suppose X, Y is any primitive solution of (I3)) and consider the principal O-ideal
a = (X + YD) generated by X 4+ Y+/D. If by [a, 3] we denote the Z-module
{ra+yp: x,y € Z}, where a, 5 € O, then because ged(X,Y) = 1 we may write

a=la,b+wl, (3.1)

where a,b € Z. (These integers a, b should not be confused with those in (IT]).)
It is well known that a can be an ideal of O if and only if a | N(b + w). Also,
we may assume that @ > 0 and 0 < b < a. Now a = N(a) = |[N(X + YVD)| =
|N| and since a | b*> — D, we get b = XY ! (mod a). (We observe that since
ged(X,Y) = 1, we must have ged(Y, N) = 1; hence, Y ! exists modulo a.) It
follows that even if we do not know a primitive solution of (I3]) a priori, we can
find candidates for b by solving the simple quadratic congruence

Z*=D (mod N). (3.2)

One of the solutions Z of (32) with 0 < Z < |N| must be b. For some such
solution Z of ([B2), then, we can put a = |[N|, b = Z in [BI). Also, since
a is principal, it must be invertible, which means that Z must be such that
gcd(N,2Z, (D — Z%)/N) = 1. If this is not the case, we must exclude the corre-
sponding ideal a from consideration.

Let ea (> 1) denote the fundamental unit, R (= logea) the regulator and h
the ideal class number of O. If v and p are two generators of a principal O-ideal
a, then

pw==xehy (ne€z), (3.3)

and
N(p) = N(ea)"N(7). (3.4)
Having selected our candidate for a, we may now perform the following steps.

1. Determine whether or not a is principal. If a is not principal, then there can
be no solutions of (3] corresponding to our selected value of Z.

2. If a is principal, solve the discrete logarithm problem (DLP) for a in O to
produce a generator v of a.

3. If N(y) = N, we have a solution X,Y of (3) when v = X + YVD. If
N(y) = —N and N(ea) = —1, we have a solution X,Y of (3 when
X 4+YVD = ~ea. If N(7) = =N and N(ea) = 1, we see from (34) that
there can be no solution of [I3]) corresponding to our selected value of Z.

We see, then, that for each possible distinct solution Z; of [B2)) we will either
find a distinct value for A; such that N(A;) = N or no such \; can exist. If we
put

{ ea when N(ea) =1,
’[7 =

€% when N(ea) = —1,
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then 17 = t + uv/D and by &3)
A" (neZ) (3.5)

represents all the solutions of (3] that correspond to Z;.
Let

k
IN|=22T]pf" (@>0;0;>0,i=1,2,... k),
i=1

where p; (i = 1,2,...,k) are distinct odd primes. Suppose that p is any of the
primes that divide N and that p? | N and p | D. If [3.2) has a solution, then
p | Z which means that p? | D, a case we have excluded. Thus, if p? | N, then
pt D. Denote by v(D,p®) the number of distinct (modulo p®) solutions of the
congruence

Z*=D (mod p®).
It is well known that if p = 2, then
1 when oo =1,
2whena=2and D=1 (mod 4),
4 when o >3 and D=1 (mod 8),

0 otherwise.

(D, 2%) =

Also, if p is odd, then

o =1+ (2)

where (D/p) is the Legendre symbol. Thus, if v(D, N) denotes the number of
distinct solutions modulo | N| of ([B2]), we see by the Chinese remainder theorem
that

v(D,N) = u(D,za)ﬁy(D,pm) —u(0,29]] <1 N <D>>

i=1 i=1 Di
< ge(N)F1.

where w(N) is the number of distinct prime divisors of N. Notice that if (D /p;) =
—1 for any p;, then v(D, N) = 0. The behaviour of w(N) is quite irregular, but
its average value (see, for example, Cojocaru and Murty [4, pp. 32-35]) is known
to be loglog|N|; hence, we expect that the usual value of v(D, N) is bounded
by a function of order log |N|. This means that in most cases it is only necessary
to solve for all the solutions of ([L3]) by using only relatively few values of Z;.
The resulting number of classes of solutions as represented by (B3] will therefore
not likely be very large. For another approach to the problem of identifying the
classes of solutions of ([3), the reader is referred to Nagell [20] and Stolt [27].
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4 The Principal Ideal Problem

As we have seen, once we can solve ([B.2]), the problem of solving ([I.T) is reduced
to that of determining whether the ideal a is principal and then finding a gen-
erator A for a such that N(\) = N. For large values of D this problem is best
approached by making use of the index calculus method described by Jacobson
[910]. Under the assumption of a certain Riemann hypothesis, the complete ver-
sion of this method, which requires the class group structure of O, has expected
running time bounded by La[1/2,v/2 + o(1)], where

Lyla,b] = exp (b(logz)* (loglog =)' %) .

(See §11.5 of Buchmann and Vollmer [3].)

In order to contrast this attack on ([L3]) with that of Lagrange, we must
introduce the concept of ideal reduction. A primitive ideal a (an ideal with no
rational integer divisors except +1) is said to be reduced if a does not contain
any nonzero « such that both |a| < N(a) and |o| < N(a) hold. By referring to
Theorem 3.5 of [28], it is easy to derive a simple criterion for determining when
the primitive O-ideal a = [a, b + w] is reduced.

Theorem 4.1. Let a = [a,b+ w] be any primitive O-ideal, where A > 0. Put
8 = Ela| + b+ w, where k = |—(b+ w)/|al||; then a is reduced if and only if
B> lal.

Furthermore, if a is reduced we must have N (a) < VA and if a is any primitive
ideal such that N(a) < v/A/2, then a must be reduced. We next point out that
given any O-ideal a, we can always find a reduced O-ideal b such that b ~ a.
There are several algorithms (see [12]) for finding 0 € K and b such that a = 6b.
Also, if for o € K we define H(a) = max{|a|, |}, then these algorithms produce
0 such that H(#) = O(N(a)).

If a = [a,b + w] is any O-ideal, we define the O-ideal p(a) to be [a’, b + w],
where ¢ = [(b+w)/|al|, V' = qla] — b, and @’ = =N (V' +w)/|a|. If a is a reduced
ideal, it is easy to show that a’ > 0 and p(a) is also a reduced ideal. If a > 0 and
a is reduced, then p is the same operation as that mentioned in [I3, p. 214] and
p can be inverted. Note that p(a) = va, where v = (V + w)/a.

Since the norms of all reduced ideals are bounded above by v/ A, there can
only be a finite number of them in O. Indeed, if we begin with a reduced ideal
a; and compute az = p(ay), ag = p(az), ..., a;r1 = p(a;) = p’(ay), it turns out
that there is some minimal [ > 0 such that a;1; = a;. In addition, if b is any
reduced ideal such that b ~ a;, then b € C = {ay,as,...,a;}. The ordered set C
is called the cycle of reduced ideals equivalent to ay.

Put in a more modern setting, Lagrange’s method for solving (L3]) essentially
takes each candidate ideal a and finds a reduced ideal b ~ a with a = 6b. If
a is principal, then b must be principal, say b = (), and A\ = 6u. Since b
is reduced, b must be in the cycle C of reduced ideals equivalent to O = (1);
thus, in order to determine whether a is principal, we must search for b among
the [ ideals in C. If b € C, we get a value for A, if b ¢ C, then there is no
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solution of (L3) corresponding to our selected ideal a. Difficulties in applying
this technique occur when D is large; this is because [ is often of order v/ D, which
means that the creation of and search through C can be very time-consuming.
Thus for large values of D it seems that the use of the index calculus method
is the better technique for finding solutions to ([L3]). There are, however, two
significant problems that could arise on employing this algorithm.

1. Even the smallest possible values of X and Y satisfying ([L3]) when D is large
can be absolutely enormous. Indeed, it is often not even possible to write
them down in standard decimal notation. However, in order to solve (L)
we need to have the values of X and Y (and t) modulo 2aD; thus, we need
to have a method of finding X and Y that allows for this. Fortunately, this
problem is easy to solve because the index calculus methods can furnish us
with an approximation to log A and this can be used to produce a compact
representation (see Buchmann et al. [2] and [3, §11.5.3]) to express A (=
X+ Y\/D). From this, we can then find X and Y modulo 2aD by using the
process described by Jacobson and Williams [I5].

2. We mentioned that the subexponential complexity of the index calculus
procedure is dependent on the truth of a generalized Riemann hypothesis
(GRH). This does not really cause a problem if the process yields a gen-
erator for a, but it can be a real difficulty if it doesn’t or declares b to be
non-principal. In this case, we cannot rigourously prove that a is not prin-
cipal because this is dependent on the truth of the GRH. As it might be
required to prove that (II) has no solutions, this could be a substantial
problem.

For the remainder of this paper we will concentrate our efforts on how to deal
with problem 2 above. We will develop a Las Vegas algorithm for solving this
problem which executes in time O(hA€). Our inputs to this process, besides D,
N and the candidate ideal a are R’y and h, where R/y € Q, |[R'y—log, ea| < 1. We
can produce values for R/, and h by using the index calculus techniques described
by Jacobson [9] and Maurer [I9] in time bounded above by La[1/2,v/2 + o(1)],
but we don’t have a proof that they are correct because of the assumption of
the GRH. Previous to the development of these techniques, the best method
available for computing R was the O(A'/5+¢) Las Vegas algorithm of Lenstra
[18] and the best methods for computing h were the conditional algorithms in
[18] and Srinivasan [25]. The correctness of R’y can be verified deterministically
in time O(R/3+€) by using the method described in [8] and de Haan [7]. Once
R/, has been determined we can establish a possible value for h by invoking the
extended Riemann hypothesis on L(1, x), where x(n) = (4/n) (see [10, p. 33]).
Indeed, it is even possible to use Booker’s technique [I] to verify the value of h
unconditionally in time O(A'/4*€), but we will not require this here. We can also
produce a compact representation of 77 and from this determine ¢ (mod 2aD) for
use in dealing with problem 1.

As it is well known that R = O(AY/?%¢), we see that the complexity of our
process, like Lagrange’s, is still exponential, but it is much faster because | =
O(R) and Lagrange’s search executes in O(l) operations. As both the verification
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process for R/, and our principal ideal testing technique require the algorithm
AX mentioned in [8] and described in [7, pp. 44-46], it is useful to discuss an
improved version of this in the next two sections.

5 The Algorithms NUCOMP and WNEAR

One of the most important concepts that we will require in the development of
our techniques is that of the infrastructure of ideal classes, discovered by Shanks
[23]. As this is discussed at some length in [I8], [28], [I1], and [13], we will simply
assume here that the basic ideas behind it are known to the reader. Making use
of the infrastructure, however, requires that we compute distances, and as such
quantities are logarithms of quadratic irrationals, they must be transcendental
numbers. This means, of course, that we cannot compute them to full accuracy,
but must instead be content with approximations to a fixed number of figures.
When A is small, this is not likely to cause many difficulties, but when A becomes
large, we have no real handle on how much round-off or truncation error might
accumulate. Numerical analysts pay a great deal of attention to this problem, but
frequently computational number theorists ignore it, hoping or believing that
their techniques are sufficiently robust that serious deviations of their results
from the truth will not occur. It must be admitted that this is usually what
happens, but if a computational algorithm is to produce a numerical answer that
is to be formally accepted as correct, it must contain within it the same aspects
of rigour that one would expect within any mathematical proof. This means that
we must provide provable bounds on the possible errors in our results.

In the procedures that we will describe below, we will deal with this problem
of error accumulation by making use of what we call (f,p) representations of
ideals.

Definition 5.1. Let p € Z*, f € R with 1 < f < 2P and let a be an O-ideal.
An (f,p) representation of a is a triple (b, d, k) where

1. b is an O-ideal equivalent to a, d € N with 2P < d < 2P+ k€ Z;
2. there exists a 0 € K with b = 0a and

w-kg f
d op°

Note that (a,2P*!, —1) or (a,2” + 1,0) is an (f, p) representation of a (6 = 1).
Note also that k ~ log, 6.

An (f,p) representation of a is said to be reduced if b is a reduced O-ideal.
It is said to be w-near for some w € ZZ° if it is reduced and two additional
conditions hold:

1. k<w,
2. If by = b and by = p(by) = b, then there exist integers d’, k' with k& > w,
20 < d' < 2P+ such that

1)<

f
2p°

2oy

d !

<
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If (b,d, k) is a w-near (f,p) representation of some O-ideal a and f is not too
large, then the parameters # and k& will not be far from 2% and w, respectively.
We can be more precise about this in the following lemma, which can be proved
by using the same technique as that used in the proof of Corollary 4.1 of [13].

Lemma 5.1. Let (b,d, k) be a w-near (f,p) representation of some O-ideal a
withp > 4 and f < 2P~4. If 0 and v have the meaning assigned to them above,
then

I5N(b) 15 6 17

16v/A < 169 Sow <16

34 34v/A
0>k—w> —log2( 15@”) > —log, (15N(b)> .

From this result it easily follows that if (b, d, k) is a w-near (f,p) representation
with f < 2P~%, then 0 < w — k = O(log A).

Suppose we are given p and f with f < 2P~=% Let a (= a1) be any reduced
O-ideal. By our results in §4l and [28], we can use the simple continued fraction
expansion of (P 4+ v/D)/Q, where a = [Q, P + /D], to produce a sequence of
reduced ideals

and

a1,0a2,0a3,...,05,... (51)

with a; = 6ja; (j = 1,2,...). We may also assume that for each a; we have
d;, kj € Z such that (a;,d;, k;) is a reduced (f,p) representation of a. Since

279, 1
1
ok d, ’< 16
and 2P < d; < 2PT! ) we get
15, 17,
9k < g, < ok,
16° %< g

By Theorem 2.1 of [§], we have 010 > 26,, 6,4; > 36; (i > 3). Thus, if i > 3,
then g 3.3
okj+i " 00, > 9k
> 179j+ T 0; >

Hence kj;; > k;j when j > 3. If j = 2, then
15
2kitz > Toki > gki-v,
17

consequently, kjio > k.

Now suppose that (a;,d;, k;) and (ap,dp, ky) are both w-near (f,p) repre-
sentations of a. Since a;11 = p(a;) and apy1 = p(ap), we must have k; < w,
kjy1 > w, by < w, kpyr > w. We will assume with no loss of generality that
h > j. Clearly, we cannot have h = j + 1. If h = j + i, where i > 3, then

kn =kjr1vi1 > kj > w,
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a contradiction. Thus, if we have distinct O-ideals a; and a; such that both
(a;,dj, k;) and (ap, dp, ki) are w-near (f, p) representations of a, then |h—j| = 2.
It follows that there can be at most two distinct O-ideals which can occur in any
w-near (f,p) representation of a. We will use the notation afw] to denote any
one of these ideals, if there are two; certainly there must be at least one such
ideal. That cﬁw} needn’t be unique will not be a problem in our applications of
this concept

An algorithm for computing afz] when a = O = (1) was given as Algorithm
3.17 of [7]. In what follows we will provide an improved version of this algorithm.
An essential ingredient in this investigation is the NUCOMP algorithm of Shanks
[24]. Given two O-ideals @’ and a”, Shanks discovered that there is a more efficient
technique for finding a reduced ideal equivalent to a’a” than first multiplying o’
by a” and then using a reduction algorithm on their product a. He was guided
in searching for such an algorithm by his need to keep the numbers involved
in the calculations as small as possible. Since ) could be as large as about the
size of D, and he wanted to keep all the values computed by his algorithm to
be of size roughly v/D, the technique of first multiplying o’ and a” and then
carrying out the reduction phase was not acceptable. Instead, he developed a
new technique which he called NUCOMP. We will not discuss Shanks’ version of
this algorithm or its later improvements by Atkin, van der Poorten and Jacobson
[22], |14] here. Instead we will consider the version of NUCOMP given in [13].
It is important to bear in mind that the operation of finding a reduced ideal
equivalent to the product of two given ideals is of fundamental significance in
performing arithmetic in O. Thus, any improvement in this procedure is most
desirable.

We begin by discussing some simple results from the theory of continued
fractions. Let qo, q1,q2, - .., ¢, ... be any given sequence of integers (partial quo-
tients). Let ¢ (= ¢p) be any given real number. If we define

1 _ .
¢]+1:¢ ) (]:071’27...71)7

7 4
then we can express ¢g as the continued fraction
1
$o = qo + 1
+
q1 1
q2 +
. 1
qi—1+ ) 1
4
Y Gig

We denote this by
b0 = (q0,q1,G2; - - -+ Gi, Pit1),
! The use of the notation a(x) (instead of ax]) was introduced in [8], but we have

adopted the notation afz] here instead of the a(z) used there in order to avoid
functional notation which would imply a unique a(z).
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where ¢; 41 is called a complete quotient. In the special case that ¢1,q2,...,¢ > 1
and ¢;+1 > 1, we say that the continued fraction is simple (SCF) and denote
this by

b0 = [q0,q1,G2; - - - > Gis Pit1]-

When ¢ is a rational number K/L, where K, L € Z and L > 0, we can pro-
duce the SCF expansion of ¢y by simply employing the Euclidean algorithm. We
put R_5 = K, R_; = L and define the sequence of remainders {R;} recursively
by

Rj_o=qjRj_1 + R (O<Rj<Rj_1; jZO,l,...,n—l).

We must ultimately find some n such that R, =0 and then
K/L=[q,q,9;---,qn]-
If we define the sequence {C;} by C_2 =0, C_; = —1 and
Cj=Cj2—¢q;Cj,
it is an exercise in mathematical induction to prove the following theorem.

Theorem 5.1. Suppose Q,D,P,N,L, K, P', P" are integers such that D > 0,
VD¢ Q,Q|D— P? and

P=P'+NK, Q=NL, P=P (nodL).
If K/L = [q0,q1,q2; - - -, qn] and we put

P++D
Q
then ¢iy1 = (Piy1 +VD)/Qis1, where
Qit1 = (=1 (R:M; — C; My),
M, = (NRZ + (PI — P“)CZ)/L €7,
My = (RZ(PI +P“) +TCZ)/L S Z,
Pii1=(NR; + Qi41Ci-1)/C; — P,
T = (D — P"*)/N.

:<q07q17"'7qi7¢i+1> (Z<7’L)7

Ifa' = [Q', P’+VD],a" = [Q", P"4+vD] (Q' > Q" > 0), we can use Theorem[5.1]
to produce a modification of the version of NUCOMP given in [I3]. We begin
with R_o = Q'/S, R—1 = U (In [13] we used b; (= R;+1).) and we search for
that value of R; such that
R; < \/Q//Q”Dl/4 < R;_1.

We then produce the ideal a;12 = [Qi+1, Pit1 + \/D} ~ a’a” by using

Qir1 = (1) (RiMy — CiMy),

Pip1 = (Q"/S)Ri + Qi+1Ci—1)/C; — P,
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where
My = ((Q"/S)R; + (P' = P")Cy)/(Q'/S),
M, = ((P'+ P")R; + SR"C})/(Q'/S),
R// — (D _ P“Q)/Q//.

It is not difficult to show that the value of @;11 found above must satisfy
|Qit1] < 3V/D and from this it is a relatively simple matter to prove that either
a; 12 or p(a;+2) must be reduced. Indeed, empirical studies suggest that a; 4o is
reduced about 98% of the time. We provide the pseudocode for our new version
of NUCOMP in the Appendix.

At the conclusion of this version of NUCOMP we will have a reduced ideal b
such that

b =d'a”.
Furthermore, it can be shown that 1 < p < A3/4; indeed, | log p—log A1/4\ tends
to be small, particularly when A is fairly large (A > 10'°). Thus, at the end of
executing NUCOMP we get k > k' + k" — t, where t = O(log u) = O(log A).
That is, k' + k" — k = O(log A).

We can also modify Algorithm NEAR in [I3] to produce WNEAR. This algo-
rithm will on input (b,d, k), p, w, where k& < w and (b, d, k) is a reduced (f, p)
representation of some O-ideal a, find a w-near (f + 9/8, p) representation of a.
Notice that NEAR is WNEAR with w = 0. As w— k tends to be small in our appli-
cation of WNEAR, we can dispense with some of the procedures used in NEAR.
We provide the pseudocode for WNEAR in the Appendix. The method of proof of
correctness of WNEAR is essentially that used to prove the correctness of NEAR
used in [I3] and the number of steps necessary to execute WNEAR is O(w — k).

6 Algorithm AX

We will now develop an algorithm that can be used to compute an O-ideal a[z]
in the important special case when a = (1) and x is a positive integer. Our first
algorithm ADDXY gives us the ability to determine, given O-ideals a[z] and
ay], an O-ideal a[z + y|. This will enable us to jump quickly through the cycle
of reduced principal ideals in O.

Algorithm 1.1. ADDXY

Input: (a[z],d, k'), (a[y],d", k"), p, z, y, where (alz],d’, k") and (aly],d”, k")
are respectively z- and y-near (f’,p) and (f”,p) representations of the O-
ideal a = (1).

Output: (a[z + y],d, k), an (z + y)-near (f,p) representation of a, where f =
13/4+f/ _~_f//+f/f///2p.

1: Put (¢, g,h) = NUCOMP((a[z],d’, k'), (a[y],d", k"), p).
2: Put (¢, g',n') = WNEAR((c, g, h),p,x + v).
3 Putafz+yl=d,d=g¢g, k="
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We remark here that after step 1 has executed, we have h < kK + k" +1 <
x +y — 1. Also, ADDXY will execute in O(log A) elementary operations. This
is because k' + k" — h = O(log A), x — k' = O(log A) and y — k" = O(log A);
hence, v +y — h = O(log A) and h < = + y. Finally it is important to observe
that since a = (1), we have a> = a = (1), and a[r + y] as determined in the
algorithm is principal.

The next algorithm, AX, finds for a given x and the O-ideal a = (1) an x-near
(f,p) representation of a for a certain value of f.

Algorithm 1.2. AX

Input: x € Z* and p € Z7.
Output: (a[z],d, k) an z-near (f,p) representation of a = (1) for a suitable
fell,2r).
1: Put [ = |log, 2| and compute the binary representation of x, say

l
Tr = Z bi2l_i
=0

(b():l,bi 6{0,1} for ISZSZ)

2:LetQ=1,P=0,b=[1,vVD],d=2"+1,k=0,i=0, 5o = 1.
3: Put (b, do, ko) = WNEAR((b, d, k), p, 1)
4: while 7 <[ do
5. Put (big1,dit1, kiv1) = ADDXY ((b;, di, ki), (b5, di, ki), p, s, 8i)-
6: Put Si+1 = 281‘
7 if bi+1 =1 then
8: Put s;41 =2s; 4+ 1 and
(bit1,dit1, kiy1) < WNEAR((biy1, dit1, Ki1), D, Si1)-
9: end if

10: 1— 1+ 1.
11: end while
12: Put CL[I] =bd=d;, k=k.

Clearly, Algorithm AX will execute in O(log zlog A) elementary operations.
That the algorithm is correct follows easily by observing that

bj 20[8]‘] ~a (j 2071,27...7”.
We now find an upper bound on f.

Theorem 6.1. Suppose p > 8 and h € R* with h > logyx. Put m = 11.2.
If hmax < 2P, then the value of f after AX has executed satisfies f < mx and
therefore f < 2P /h.
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Proof. After Step Bl we see that (b;11,dit1,ki+1) is an s;41-near (fi11,p) rep-
resentation of a, where

13 f?
2f;i 4+ ¢
4+f+2p

and fo =1+9/8=17/8. We put f = f;. Since s; = z, algorithm AX produces
an z-near (f,p) representation (b;, d;, k;) of a. We now define ag = fo, ¢ = 37/8

and )
Ait1 = (2+ h) a; + c.

A closed form representation for a; is given by a; = g'ag + c(g* — 1)/(g — 1);
hence, an analysis similar to that employed in the proof of Lemma 3.8 of [I1]
yields

9
f¢+1=8+ 1<i+1<I) (6.1)

ar < g'(ag + ¢) < 2'e?(ag + ¢) < 2'm < ma,
where m = 11.2. As in the proof of Theorem 3.9 of [II] we have ha; < 2P
(1=0,1,2,...,1) and hfy < 2P. Thus, by using induction on (G.1I), we can show
that f; <a; (1 =0,1,2,...,10). It follows that f < mn and hf < 2P.

Suppose now that we are given some x € R and a € RZ° such that
|z —log, 05| < a,

where a; = 6;a; in (). If @ is not too large, we would expect that if a; = afx]
in (BJ), then ¢ and j should be close in value. However, just how close would
they be? In order to answer this question we will begin by defining c(m).

Definition 6.1. Let {F;} be the sequence of Fibonacci numbers with Fy = 0,
Fy, = 1. For a fited m € R, we define ¢(m) = max{my, ma} where my and mq
are respectively the largest integers such that

17

omtl
16

16
Fo, <

152m and Fp,,11 <

Notice that m; > 0, mg > —1. For example, if m = —3/2 then m; = 0, my = —1
and ¢(—3/2) = 0. A short table of values for ¢(m) is given in Table

It is easy to show that if m’ < m, then ¢(m’) < ¢(m). It is also easy to deduce
an upper bound on c(m).

Table 6.1. Some values of ¢(m)
m  c(m)
2 5
3 6
4 8
5 9
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Proposition 6.1. If m > 1, then

c(m) <3+ 3;71.

We can now use ¢(m) to bound the value of |i — j|.

Theorem 6.2. Let z,k € Z, where x > 1. Suppose a,b € R and
a <log,0; —x <b.

If a; = a[z], then
j—c) <i<j+c(—a-—1).

Proof. We must have

27T < 9, < 27T, (6.2)
By Lemma [Tl we know that
17 15
i 2%, 0; 2%, .
9<16 9+1>16 (63)

By Theorem 2.1 of [8] when n > 1, i > 0, we have

15
0+ Oit1 > (16)
By (63) and Definition [61] we find that for m = b

15

2T > gmtw — obtw - g
16) > > 0,

Oitmi+1 > Frny410i11 > Fini a1 (

It follows that j <i+mq +1 <i+ 1+ ¢(m). Hence i > j — ¢(b).
Also, if i > n, by (62) and ([G3) we get for n >0 and m = —a — 1

17 17 17
F . < 0. z —aor+a m—+1 y
n410in < 6; < (16)2 (16)2 2 < (16)2 &

Putting n = ma + 1 and noting that F,, 2 > (17/16)2™1 we get
ei_m2_1 < 9]‘.
Thus, j >i—me—1>i—c¢(m)—1land i <j+c(—a—1). Ifi <n=my+1,

then i <c¢(m)+1<j+c(—a—1).

7 Verifying That an Ideal Is Or Is Not Principal

In this section we will only outline a Las Vegas process for determining whether a
reduced ideal b is (or more importantly is not) principal. A more detailed version
of this process can be found in Silvester [26]. As mentioned in §] we will assume
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we have been given R/, and h produced by the index calculus algorithm. We
now provide the steps needed. By using methods based on the infrastructure,
it is possible to verify deterministically whether or not b is principal in time
complexity O(R'/?%¢). Since

hR = O(AY?Fe), (7.1)

this means that we could certainly solve problem 2 in §4 unconditionally in
time bounded by O(AY4+¢). The procedure that we will describe here, while
conditional, should accomplish this in time bounded by O(A/6+).

1. We first execute algorithm EXP((b,2P*!, —1),h,p) of [I3] to find a near
reduced (f, p) representation (¢, d, k) of b", where f < 2P~%. It is not difficult
to show that |logy ¢ — k| < 3/2, where ¢ = ¢b".

2. We next make use of the index calculus algorithm to solve the DLP for ¢ to
obtain some g € Q such that

|logy vy — g] < 1,

where ¢ = () and 1 < v < ea. It this case we certainly expect this process
to be successful because b" must be principal if & is really the class number.
It is this aspect of our technique that renders it a Las Vegas algorithm, as
we cannot be certain that this part of it will execute in subexponential time.

3. We put a = (1) and use AX to compute ? = a[[g]]. By Theorem [62 we
must be able to find some i € {£3, 42, 41,0} such that p'(d) = ¢. If we do
not, then ¢ cannot be principal.

4. We next compute d’, k' such that (¢, d’, k') is a reduced (f, p) representation
of a. This is very simple because in order to compute 9, we had to produce
an (f,p) representation of a. We also must have |log, v — k| < 3/2, where
¢ = (y). Thus

-3+ Kk —k<logyy—logyd <3+Kk —k. (7.2)

Before continuing to produce the next steps needed in this process, we must
make a few observations. If b is principal, then we may assume that b = (3),
where 8 € O and 1 < 3 < ea. Also,

B =7,
where A = €’,. Hence
hlogy B =1logyy —logad +rRA  (Ra =logyen). (7.3)
By making use of this equation, we can prove two results.
Theorem 7.1. If Ra > 9/2 + logy(34v/A/15), then r in ([T3) must satisfy

—1<r<h. (7.4)
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Theorem 7.2. If (T3] holds and b(r) = [(rR)y, + k' — k)/h], then
3
|log, B —b(r)] <2+ b <5.

By Theorem B2 we see that if we put S = {p’(b) : |i|] < 9}, then b will be
principal if and only if a[b(r)] € S for some r satisfying ([C4]). Thus, our final
step is

5. For r = —1,0,1,..., h test to determine whether a[b(r)] € S. b is principal
if and only if this happens for some r in the given range.

If h is large we can improve the execution of Step 5 by observing that

b(r+1) =0b(r) + ﬁﬂ + k(r), (7.5)
where k(r) € {0,—1}. We can precompute a[[R’,/h]] and a[[R'y/h] — 1] and
then we have

_ [ ADDXY (a[b(r)], a[[ Ry /R 1]) when k(r) =0,
alb(r +1)] = {ADDXY(E[()(T}], al[ R 7] - 1]) when k(r) — —1.

The value of k(r) is easily computed from (73l and the formula for b(r + 1).
Clearly, Step 5 executes in time complexity O(hA€).

If we take into consideration that we must verify R/,, a process that requires
O(R1/3+€) elementary operations, this together with Steps 1-5 will execute in
expected time complexity

O(RY3**€) 4 O(hA©). (7.6)

If h > AY6, an unusual circumstance since h tends to be small (see Cohen and
Lenstra [5]), then by (ZI) R = O(A'/3+¢) and we can solve the principal ideal
problem in time complexity O(R'/?t¢) = O(A'Y/%+¢) by using infrastructure
methods. If h < A then by (ZB) we can solve this problem in O(A'Y/6+¢)
operations by using the new procedure.

We conclude this section with a simple example left over from [I5]. Let

dy = 187060083,

dz = 1311942540724389723505929002667880175005208,
=2

J2 = 21040446251556347115048521645334887.

In [I5] it was necessary to show that

= ¢ = 880813063496060911643645 (7.7)
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has no integer solutions. Since 4 | ds, it is sufficient to show that all ideals of
norm cd; in O = [1, \/D]7 where D = dyds/4, are not principal. In this case A,
the discriminant of O is the 51 digit number

A = dyds = 245412080559135221803366130231160886970528733912264
and, using the subexponential algorithm, we found that
h =1024 and R’ = 6851106675369184895740.24677.

Here R’ is an approximation to the regulator R of O. Looking at the prime
factors of cdy, we see that

cdy =9 - 769 - 33809 - 6775714175075849- 3 - 7 - 8907623
~ ~

factors of ¢ factors of di

and since the prime factors of d; ramify in O, we found a total of 16 ideals of norm
cdy. By excluding ideal conjugates, we can reduce this to only 8 candidates. By
invoking the ERH it was possible to show that (1) had no solutions. However,
by using the method described here we were able to show unconditionally that
this equation has no solutions. Most (87%) of the time needed to perform this
algorithm was required to verify R',.
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Appendix

In this brief appendix we provide the pseudocode for our versions of NUCOMP
and WNEAR. Note that in NUCOMP we make use of the following theorem
which can be proved in the same manner as Theorem 5.1 of [13].

Theorem 7.3. Let (b',d’', k") be an (f',p) representation of an O-ideal ¢’ and
let (6”,d", k") be an (f",p) representation of an O-ideal a”. If d'd" < 22P+1
put d = [d'd" /27, k = k' + k". If dd" > 2P+, put d = [d'd" /271, k =
K +k"+1. Then (b'6",d, k) is an (f,p) representation of the product ideal a’a”,
where f =1+ f' + f"+27Pf .


http://math.ucalgary.ca/~aksilves/papers/msc-thesis.pdf
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Algorithm 1.3. NUCOMP
Input: (b',d, k), (b”,d", k"), p, where (b’,d’, k") is a reduced (f’, p) represen-

tation of an invertible O-ideal a’ and (b”,d”, k") is reduced (f”, p) represen-
tation of an invertible O-ideal a”. Here,

b = [QQP' + \/D] b= [Q’QP" + \/D] L Q' >Q">0.

Output: A reduced (f,p) representation (b,d, k) of a’a”, where b = [Q, P +

10:

12:
13:
14:
15:
16:
17:
18:
19:
20:

VD], (P+vVD)/Q >1,-1 < (P—vVD)/Q < 0,k < k'+k'+1, f = f*+17/8
with f* = f/ + f" + 27Pf .

Compute G = (Q',Q") and solve Q"X =G (mod Q') for X € Z, 0 < X <
Q'

Compute S = (P’ + P”,G) and solve Y(P' + P")+ ZG = S for Y, Z € Z.
Put R” = (D — P")/Q", U = XZ(P' — P") + YR" (mod Q'/8), where
0<U<Q'/S.

Put R.1=Q'/S,Ry=U,C_1=0,Co=-1,i=—1.
if d'd” < 22r*+1 then
Put d=|d'd"/2P], k=K + k"
else
Put d = [d'd"/2°P" ], k=K + k' +1
end if
if R_1 < [\/Q'/Q"DY*| then
Put
Qit1=Q'Q"/S?,
Py =P"+UQ"/S (mod Qiy1).
Go to 211
end if
while R; > [/Q'/Q"D'*| do
1—1+1
¢ = |[Ri—2/Ri_1]
Ci=Ci_g —q;Ci1
R =Ri_2—qRi_y
end while
Put

((Q"/rs)R; + (P" — P")C;)/(Q'/9),
((P"+ P")R; +rSR"C;)/(Q'/S),
(=1)"*H(R; My — CiMs),

= ((Q"/rS)Ri + Qix1Ci—1)/C; — P".

Qz+

z+1



58 R.E. Sawilla, A.K. Silvester, and H.C. Williams

21: Put j = 1,
z+1 |Ql+1|
L . I_\/DJ z+1
i+1 — )
i
Pl =kit1Qj 4 + Pita,

and o = sign(Qiy1), Bi—1 = 0|Ci_1|, Bi—2 = |Ci_2|.
22: if P/, + [VD] > Q/,, then
23:  Gotol2l
24: else
25:  Put j =2 and

B {Piﬂ + L\/DJJ
qdi+1 = )

Qi
Pii2 = ¢i1Qi 41 — Pit1,
D- P2,
Qive = R
1+1
z+2 ‘Q2+2|

kiyo = \‘L\/DJ Z+2J ;
i+2

Py =kit2Qi1 + Piya.
Biy1 =qi1Bi + B 1.

26: end if
27: Find s > 0 such that 2SQ’ > 20H4SB L.

28: Put b= [Q},,, P/, ; + VD] and

Ti+j = 2°QirjBirj—2 + Birj—1(2°Pirj — |2°VD)).

29: (bvdv k) = DIV((bvevh)ﬂ S/TiJrqu;—&-jaSap)'

Algorithm 1.4. WNEAR

Input: (b,d, k), p, w, where k < w and (b, d, k) is a reduced ( f, p) representation
of some O-ideal a. Here b = [Q, P + /D], where P + |vD] > Q, 0 <
VD] - P <Q.

Output: (c,g,h) a w-near (f + 9/8,p) representation of a.

1: Find s € Z2% such that 2°Q > 2P™. Put Qo = Q, Py = P, Q_1 = (D —
P2)/Q, M = [2pts=ktwQo/d], T_o = —25Py+ [2°V/ D], T_1 = 2°Qq, i = 1.
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while Ti—2 S M do
¢i-1=|(Pi_1+ |VD])/Qi 1]
Pi=q 1Qi1— P
Qi =Qi—2—qi1(Pi — Pi—1)
Tic1=qi1Ti2+Ti—3
1—1+1
end while
Put e;_y = [2P75T3T;_3/Qo]
if de;_; < 2Zp—k+w+3 then
Put ¢ = [Qi—2, P,—a + VD], e = e;_1.

: else
Put ¢ = [Q;_3, P,_3 + VD], e = [2P 53T, _4/Qo].
: end if
: Find t such that d
t e t+1
2" < 92p+3 < 20T,

Put

ed
9= {2p+t+3-‘7 h=k+t.
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Abstract. We present an algorithm that, on input of a CM-field K, an
integer £ > 1, and a prime r = 1 mod k, constructs a ¢g-Weil number
m € Ok corresponding to an ordinary, simple abelian variety A over
the field F of ¢ elements that has an F-rational point of order r and
embedding degree k with respect to r. We then discuss how CM-methods
over K can be used to explicitly construct A.

1 Introduction

Let A be an abelian variety defined over a finite field F, and r # char(F) a
prime number dividing the order of the group A(F). Then the embedding degree
of A with respect to r is the degree of the field extension F C F((,.) obtained by
adjoining a primitive r-th root of unity ¢, to F.

The embedding degree is a natural notion in pairing-based cryptography,
where A is taken to be the Jacobian of a curve defined over F. In this case,
A is principally polarized and we have the non-degenerate Weil pairing

e Alr] x Alr] — pr

on the subgroup scheme A[r] of r-torsion points of A with values in the r-th
roots of unity. If F' contains (., we also have the non-trivial Tate pairing

tr: Alr](F) x A(F)/rA(F) — F*/(F*)".

The Weil and Tate pairings can be used to ‘embed’ r-torsion subgroups of A(F)
into the multiplicative group F((.)*, and thus the discrete logarithm problem
in A(F)[r] can be ‘reduced’ to the same problem in F(¢.)* [6l3]. In pairing-
based cryptographic protocols [7], one chooses the prime r and the embedding
degree k such that the discrete logarithm problems in A(F)[r] and F((.)* are
computationally infeasible, and of roughly equal difficulty. This means that r is
typically large, whereas k is small. Jacobians of curves meeting such requirements
are often said to be pairing-friendly.

* The first author is supported by a National Defense Science and Engineering Grad-
uate Fellowship.
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If F has order ¢, the embedding degree k = [F((,) : F] is simply the multi-
plicative order of g in (Z/rZ)*. As ‘most’ elements in (Z/rZ)* have large order,
the embedding degree of A with respect to a large prime divisor r of #A(F)
will usually be of the same size as r, and A will not be pairing-friendly. One is
therefore led to the question of how to efficiently construct A and F such that
A(F) has a (large) prime factor r and the embedding degree of A with respect
to r has a prescribed (small) value k. The current paper addresses this question
on two levels: the eristence and the actual construction of A and F.

Section [2 focuses on the question whether, for given r and k, there exist
abelian varieties A that are defined over a finite field F, have an F-rational
point of order r, and have embedding degree k with respect to r. We consider
only abelian varieties A that are simple, that is, not isogenous (over F) to a
product of lower-dimensional varieties, as we can always reduce to this case.
By Honda-Tate theory [10], isogeny classes of simple abelian varieties A over the
field F of ¢ elements are in one-to-one correspondence with Gal(Q/Q)-conjugacy
classes of q- Weil numbers, which are algebraic integers 7 with the property that
all embeddings of 7 into C have absolute value ,/q. This correspondence is given
by the map sending A to its ¢-th power Frobenius endomorphism 7 inside the
number field Q(7) C End(A) ® Q. The existence of abelian varieties with the
properties we want is thus tantamount to the existence of suitable Weil numbers.

Our main result, Algorithm [ZT2] constructs suitable ¢-Weil numbers 7 in a
given CM-field K. It exhibits 7 as a type norm of an element in a reflex field of K
satisfying certain congruences modulo 7. The abelian varieties A in the isogeny
classes over F that correspond to these Weil numbers have an F-rational point of
order r and embedding degree k with respect to r. Moreover, they are ordinary,
i.e., #A(F)[p| = pY, where p is the characteristic of F. Theorem Bl shows that
for fixed K, the expected run time of our algorithm is heuristically polynomial
in logr.

For an abelian variety of dimension g over the field F of ¢ elements, the group
A(F) has roughly ¢ elements, and one compares this size to r by setting

_ glogq (1.1)
log r
In cryptographic terms, p measures the ratio of a pairing-based system’s required
bandwidth to its security level, so small p-values are desirable. Supersingular
abelian varieties can achieve p-values close to 1, but their embedding degrees
are limited to a few values that are too small to be practical [4J§]. Theorem B4
discusses the distribution of the (larger) p-values we obtain.

In Section[] we address the issue of the actual construction of abelian varieties
corresponding to the Weil numbers found by our algorithm. This is accomplished
via the construction in characteristic zero of the abelian varieties having CM by
the ring of integers Ok of K, a hard problem that is far from being algorithmi-
cally solved. We discuss the elliptic case g = 1, for which reasonable algorithms
exist, and the case ¢ = 2, for which such algorithms are still in their infancy. For
genus g > 3, we restrict attention to a few families of curves that we can handle
at this point. Our final Section [ provides numerical examples.
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2  Weil Numbers Yielding Prescribed Embedding Degrees

Let F be a field of ¢ elements, A a g-dimensional simple abelian variety over F,
and K = Q(7) C End(A4) ® Q the number field generated by the Frobenius
endomorphism 7. Then 7 is a g-Weil number in K: an algebraic integer with
the property that all of its embeddings in Q have complex absolute value /q.

The ¢-Weil number 7 determines the group order of A(F): the F-rational
points of A form the kernel of the endomorphism 7 — 1, and in the case where
K = Q(n) is the full endomorphism algebra End(A) ® Q we have

#A(F) = Ng/q(m —1).

In the case K = End(A) ® Q we will focus on, K is a CM-field of degree 2g
as in [I0, Section 1], i.e., a totally complex quadratic extension of a totally real
subfield Ky C K.

Proposition 2.1. Let A, F and 7 be as above, and assume K = Q(w) equals
Endr(4) ® Q. Let k be a positive integer, @y, the k-th cyclotomic polynomial,
and r{ gk a prime number. If we have

Ng/q(r—1)=0 (mod r),
Op(rm) =0  (mod r),

then A has embedding degree k with respect to r.

Proof. The first condition tells us that r divides #A(F), the second that the
order of 7w = ¢ in (Z/rZ)*, which is the embedding degree of A with respect
to 7, equals k. a

By Honda-Tate theory [I0], all ¢-Weil numbers arise as Frobenius elements of
abelian varieties over F. Thus, we can prove the existence of an abelian variety A
as in Proposition 21l by exhibiting a ¢-Weil number 7 € K as in that proposition.
The following Lemma states what we need.

Lemma 2.2. Let w be a q-Weil number. Then there exists a unique isogeny
class of simple abelian varieties AJF with Frobenius w. If K = Q(r) is totally
mmaginary of degree 2g and q is prime, then such A have dimension g, and K
is the full endomorphism algebra Endp(A) ® Q. If furthermore q is unramified
in K, then A is ordinary.

Proof. The main theorem of [I0] yields existence and uniqueness, and shows
that £ = Endp(A) ® Q is a central simple algebra over K = Q(w) satisfying

2.dim(A) = [E: K]?[K : Q).

For K totally imaginary of degree 2¢g and ¢ prime, Waterhouse [12, Theorem 6.1]
shows that we have E = K and dim(A4) = g. By [12, Prop. 7.1], A is ordinary if
and only if 7+ 7 is prime to ¢ = 77 in Ok. Thus if A is not ordinary, the ideals
(m) and () have a common divisor p C Ok with p? | ¢, so ¢ ramifies in K. O
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Example 2.3. Our general construction is motivated by the case where K is
a Galois CM-field of degree 2g, with cyclic Galois group generated by o. Here
09 is complex conjugation, so we can construct an element 7 € Ok satisfying
wo9(m) = 7r € Z by choosing any £ € Ok and letting m = [[7_, 0%(£). For such
7, we have 7m = Nk /q(§) € Z. If Ng/q(§) is a prime ¢, then 7 is a g-Weil
number in K.

Now we wish to impose the conditions of Proposition 2.1 on 7. Let r be
a rational prime that splits completely in K, and v a prime of Ok over r. For
i=1,...,2g,put v; = o~ %(r); then the factorization of r in O is rO = Hizil o8
If a; € F, = Ok /v; is the residue class of £ modulo t;, then ¢?(¢) modulo t is
also «;, so the residue class of m modulo t is Hle «;. Furthermore, the residue

class of mm modulo t is H?il «;. If we choose £ to satisfy
[, =1€F,, (2.4)

we find 7 =1 (mod t) and thus Ng/q(m — 1) =0 (mod 7). By choosing £ such
that in addition

¢= H?L Qi = ?ig«l»l &%) (2.5)
is a primitive k-th root of unity in F, we guarantee that 7w = ¢ is a primitive
k-th root of unity modulo r. Thus we can try to find a Weil number as in
Proposition 2] by picking residue classes a; € F* for i = 1,...,2g meeting the
two conditions above, computing some ‘small’ lift £ € Ok with (£ mod t;) = «;,
and testing whether 7 = []%_, 0%(£) has prime norm. As numbers of moderate
size have a high probability of being prime by the prime number theorem, a small
number of choices (a;); should suffice. There are (r—1)29~2¢(k) possible choices
for (ai)?i 1> Where ¢ is the Euler totient function, so for g > 1 and large r we are
very likely to succeed. For g = 1, there are only a few choices (a1, az) = (1, (),
but one can try various lifts and thus recover what is known as the Cocks-Pinch
algorithm [2, Theorem 4.1] for finding pairing-friendly elliptic curves. O

For arbitrary CM-fields K, the appropriate generalization of the map
§— ?:1 o' €3]

in Example is provided by the type norm. A CM-type of a CM-field K of
degree 2g is aset & = {¢1,..., ¢4} of embeddings of K into its normal closure L
such that @ UP = {¢1,..., 04, é1,...,04} is the complete set of embeddings of
K into L. The type norm Ng : K — L with respect to @ is the map

Ng :z+— [[1_, ¢i(x),
which clearly satisfies
No(z)No(z) = Ng/q(z) € Q. (2.6)

If K is not Galois, the type norm Ng does not map K to itself, but to its reflex
field K with respect to @. To end up in K, we can however take the type norm
with respect to the reflex type ¥, which we will define now (cf. [0, Section 8]).
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Let G be the Galois group of L/Q, and H the subgroup fixing K. Then the 2¢
left cosets of H in G can be viewed as the embeddings of K in L, and this makes
the CM-type @ into a set of g left cosets of H for which we have G/H = ® U .
Let S be the union of the left cosets in @, and put S = {o~! : ¢ € S}. Let
H ={vy € @:~v5 =S} be the stabilizer of S in G. Then H defines a subfield K
of L, and as we have H = {yveG: Sy = §} we can interpret S as a union of
left cosets of H inside G. These cosets define a set of embeddings ¥ of K into L.
We call K the reflex field of (K, ®) and we call & the reflex type.

Lemma 2.7. The field K isa CM-field. It is generated over Q by the sums
Zzﬁeﬁ o(x) for x € K, and ¥ is a CM-type of K. The type norm Ng maps K

to K.

Proof. The first two statements are proved in [9, Chapter II, Proposition 28]
(though the definition of H differs from ours, because Shimura lets G act from
the right). For the last statement, notice that for v € H, we have vS = S, so

8 H¢>eq> QS(I‘) = H¢>eq> QS(I‘) a

A CM-type @ of K is induced from a CM-subfield K’ C K if it is of the form
& ={¢: ¢l € '} for some CM-type ¢’ of K'. In other words, @ is induced
from K’ if and only if S as above is a union of left cosets of Gal(L/K"). We
call @ primitive if it is not induced from a strict subfield of K; primitive CM-
types correspond to simple abelian varieties [9]. Notice that the reflex type ¥
is primitive by definition of K , and that (K,®) is induced from the reflex of
its reflex. In particular, if @ is primitive, then the reflex of its reflex is (K, ®)
itself. For K Galois and @ primitive we have K=K , and the reflex type of @ is
v={¢p"':¢ecd}

For CM-fields K of degree 2 or 4 with primitive CM-types, the reflex field K
has the same degree as K. This fails to be so for g > 3.

Lemma 2.8. If K has degree 2g, then the degree ofl/(\' divides 29¢!.

Proof. We have K = Ky(,/n), with Ky totally real and n € K totally negative.

The normal closure L of K is obtained by adjoining to the normal closure K
of Ko, which has degree dividing g!, the square roots of the g conjugates of 7.
Thus L is of degree dividing 29¢!, and K is a subfield of L. O

For a ‘generic’ CM field K the degree of L is exactly 29¢g!, and K is a field of
degree 29 generated by 3°_+/c(n), with ¢ ranging over Gal(K,/Q).

From (Z€) and Lemma 27 we find that for every & € Op, the element
m = Ny (§) is an element of Ok that satisfies 7w € Z. To make 7 satisfy the
conditions of Proposition 2] we need to impose conditions modulo 7 on & in K.
Suppose 7 splits completely in K, and therefore in its normal closure L and in
the reflex field K with respect to @. Pick a prime R over r in L, and write
ty =~ H(R) N O for 1 € ¥. Then the factorization of r in O is

TOI? = Hweu'/ Ty Ty (2.9)
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Theorem 2.10. Let (K,®) be a CM-type and (K, W) its refler. Let r = 1
(mod k) be a prime that splits completely in K, and write its factorization in
Og as in Z9). Given £ € Og, write ({ mod ty) = ay € Fp. and (§ mod ty) =
By € ¥y for o € U. If we have

Hzpelf ay =1 and Hzpesp By =¢ (2.11)

for some primitive k-th root of unity ¢ € ¥, then m = Ny (&) € Ok satlisfies
mw € Z and

Ng/q(mr—1)=0 (mod r),
Op(rm) =0  (mod 7).

Proof. This is a straightforward generalization of the argument in Example 2.3
The conditions (Z11]) generalize [24) and (Z3]), and imply in the present context
that 7 — 1 € Ok and @ (n7) € Z are in the prime | C Of, over r that underlies
the factorization (Z2.9]). O

If the element 7 in Theorem generates K and N, q(m) is a prime ¢ that
is unramified in K, then by Lemma 2.2] 7 is a g-Weil number corresponding to
an ordinary abelian variety A over F = F, with endomorphism algebra K and
Frobenius element 7. By Proposition[2.]] A has embedding degree k with respect
to r. This leads to the following algorithm.

Algorithm 2.12

Input: a CM-field K of degree 2g > 4, a primitive CM-type @ of K, a positive
integer k, and a prime r = 1 (mod k) that splits completely in K.

Output: a prime ¢ and a ¢-Weil number 7 € K corresponding to an ordinary,
simple abelian variety A/F with embedding degree k with respect to 7.

1. Compute a Galois closure L of K and the reflex (fﬁ@) of (K, D). Set g «—
3 deg K and write ¥ = {1,¢2, ..., 95}

2. Fix a prime R | r of Op, and compute the factorization of 7 in Op as in

).

Compute a primitive k-th root of unity ¢ € F}.

Choose random ay,...,a5-1,51,...,B5-1 € F;.

Set ag «— Hf:_ll a; ' € Ff and 35 — CHf;ll L c Fr

Compute & € Op such that (£ mod ty,) = a; and (§ mod vy,) = 3; for

i=1,2,...,3.

7. Set q — NR/Q(g). If ¢ is not prime, go to Step ().

8. Set m « Ny (). If ¢ is not unramified in K, or 7 does not generate K, go to

Step ().

9. Return ¢ and 7.

S O w

Remark 2.13. We require g > 2 in Algorithm [ZT2] as the case g = 1 is already
covered by Example 2.3 and requires a slight adaptation.

The condition that » be prime is for simplicity of presentation only; the al-
gorithm easily extends to square-free values of r that are given as products of
splitting primes. Such r are required, for example, by the cryptosystem of [I].
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3 Performance of the Algorithm

Theorem 3.1. If the field K is fized, then the heuristic expected run time of
Algorithm [2.13 is polynomial in logr.

Proof. The algorithm consists of a precomputation for the field K in Steps (1)-
(3), followed by a loop in Steps @)—(0) that is performed until an element ¢ is
found that has prime norm NIA{/Q(Q“) = ¢, and we also find in Step ({) that ¢ is
unramified in K and the type norm m = Ny (§) generates K.

The primality condition in Step (@) is the ‘true’ condition that becomes harder
to achieve with increasing r, whereas the conditions in Step (&), which are neces-
sary to guarantee correctness of the output, are so extremely likely to be fulfilled
(especially in cryptographic applications where K is small and r is large) that
they will hardly ever fail in practice and only influence the run time by a constant
factor.

As £ is computed in Step (@) as the lift to O of an element § € O /rOp =
(F,)?9, its norm can be bounded by a constant multiple of 729. Heuristically,
q =Nz (&) behaves as a random number, so by the prime number theorem it

will be prime with probability at least (2glogr) !, and we expect that we need
to repeat the loop in Steps {@l)—([) about 2glogr times before finding £ of prime
norm ¢q. As each of the steps is polynomial in logr, so is the expected run time
up to Step (), and we are done if we show that the conditions in Step () are
met with some positive probability if K is fixed and r is sufficiently large.

For ¢ being unramified in K, one simply notes that only finitely many primes
ramify in the field K (which is fixed) and that ¢ tends to infinity with r, since
r divides NK/Q(T( — 1) < (\/q + 1)29.

Finally, we show that m generates K with probability tending to 1 as r tends
to infinity. Suppose that for every vector v € {0,1}9 that is not all 0 or 1, we
have

I (/B # 1. (3.2)

This set of 29 — 2 (dependent) conditions on the 2§ — 2 independent random
variables a;, 3; for 1 < i < ¢ is satisfied with probability at least 1 — (2§—2) /(r—
1). For any automorphism ¢ of L, the set ¢ oW is a CM-type of K and there is a
v € {0,1}9 such that v; = 0 if ¢ o ¥ contains 1); and v; = 1 otherwise. Then «; is
(¢;(€) mod R), while 3; is (¢;(£) mod R), so (7/¢(w) mod R) is [[7_, (as/B;)"".
By [2), if this expression is 1 then v =0o0rv=1,80 poW =W or poW =V,
which by definition of the reflex is equivalent to ¢ or ¢ being trivial on K, i.e.,
to ¢ being trivial on the maximal real subfield K. Thus if ([B2]) holds, then
¢(m) = m implies that ¢ is trivial on Ky, hence Ky C Q(7). Since 7 € K is not
real (otherwise, ¢ = 72 ramifies in K), this implies that K = Q(). O

In order to maximize the likelihood of finding prime norms, one should minimize
the norm of the lift £ computed in the Chinese Remainder Step (@]). This involves
minimizing a norm function of degree 2¢g in 2¢ integral variables, which is already
infeasible for g = 2.
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In practice, for given r, one lifts a standard basis of Op /rOp = (F,)% to
O . Multiplying those lifts by integer representatives for the elements a; and ;
of F,., one quickly obtains lifts £&. We also choose, independently of r, a Z-basis
of O consisting of elements that are ‘small” with respect to all absolute values
of K. We translate & by multiples of r to lie in rF', where F' is the fundamental
parallelotope in K®R consisting of those elements that have coordinates in
(— ;, 2] with respect to our chosen basis.

If we denote the maximum on F N K of all complex absolute values of K by
Mz, we have ¢ = NIA{/Q(Q“) < (rMg)?9. For the p-value () we find

p < 299(1 +log Mg /logr), (3.3)

which is approximately 2gg if r gets large with respect to Mp. We would like
p to be small, but this is not what one obtains by lifting random admissible
choices of €.

Theorem 3.4. If the field K is fized and r is large, we expect that (1) the
output q of Algorithm[Z12 yields p ~ 297, and (2) an optimal choice of £ € Op
satisfying the conditions of Theorem [Z10 yields p ~ 2g.

Open Problem 3.5. Find an efficient algorithm to compute an element £ €
Op satisfying the conditions of Theorem [ZI0 for which p ~ 2g.

We will prove Theorem B4 via a series of lemmas. Let H,j be the subset of
the parallelotope rF' C K®R consisting of those £ € 7F'N O that satisfy the
two congruence conditions (ZIT]) for a given embedding degree k. Heuristically,
we will treat the elements of H, , as random elements of rF with respect to
the distributions of complex absolute values and norm functions. We will also
use the fact that, as K is totally complex of degree 2g, the R-algebra K®Ris
naturally isomorphic to C9. We assume throughout that g > 2.

Lemma 3.6. Fiz the field K. Under our heuristic assumption, there ezists a
constant ¢; > 0 such that for all € > 0, the probability that a random & € H,
satisfies q < 1202 s less than circ.

Prf)of. The probability that a random & lies in the set V = {z GAC§ 111z |f <
r20=9)} N rF is the quotient of the volume of V by the volume 279, /|Az[r? of

rF, where Ag is the discriminant of K. Now V is contained inside W = {z €
C9 : []|zi|?> < r%@-9),|z;| < rMz}, which has volume

(2ﬂ)§/H\xi\dm < (277)5/7@*5(13; = (2rMg)Tr%e,

z€[0,r Mz]? z€[0,r M%]?
el ?<r26 =2

so a random ¢ lies in V' with probability less than (4mMz)9|Az |72/ 2r—=. |
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Lemma 3.7. There exists a number Qz, depending only on I?, such that for
any positive real number X < rQg, the expected number of § € Hyp with all
absolute values below X is o
p(k)(2m)7 X9
[Agl

Proof. Let Qg > 0 be a lower bound on K \ F' for the maximum of all complex

absolute values, so the box Vx C K®R consisting of those elements that
have all absolute values below X lies completely inside (X/Qp)F C rF. The
volume of Vx in K ® R is (mX2)9, while F has volume 279, /|Ag|r%. The
expected number of £ € H, i, satisfying || < X for all absolute values is #H, j =
729-2p(k) times the quotient of these volumes. O

Lemma 3.8. Fiz the field K. Under our heuristic assumption, there exists a
constant co such that for all positive e < 2g — 2, if v is sufficiently large, then
we expect the number of £ € H,}, satisfying NIA(/Q(Q“) < 12T to be at least cor®.

Proof. Any £ as in Lemma [3 7 satisfies N]A(/Q(g) < X?9 50 we apply the lemma
to X = r(1/9+2/29) which is less than 7Q » for large enough r and € < 2G—2. O

Lemma 3.9. Fiz the field K. Under our heuristic assumption, for all € > 0, if
r is large enough, we expect there to be no £ € H, j, satisfying NIA{/Q(Q“) < r?E,

Proof. Let O be the ring of integers of the maximal real subfield of K.Let U
be the subgroup of norm one elements of O*. We embed U into R by mapping
u € U to the vector [(u) of logarithms of absolute values of u. The image is a
complete lattice in the (g — 1)-dimensional space of vectors with coordinate sum
0. Fix a fundamental parallelotope F’ for this lattice. Let £ be the element of
H, ) of smallest norm. Since the conditions (Z.I1]), as well as the norm of &,
are invariant under multiplication by elements of U, we may assume without
loss of generality that [(§y) is inside F’ + C(1,...,1). Then every difference of
two entries of [(£y) is bounded, and hence every quotient of absolute values of
&o is bounded from below by a positive constant c3 depending only on K. In
particular, if m is the maximum of all absolute values of &y, then Np /Q(E) >

(03m)2§. Now suppose & has norm below 7272, Then all absolute values of &, are
below X = r(1/9-2/29) /cs and X < rQg for r sufficiently large. Now Lemma
Bl implies that the expected number of { € H, ;, with all absolute values below
X is a constant times r~¢, so for any sufficiently large r we expect there to be
no such &, a contradiction. O

Proof (of Theorem B4]). The upper bound p < 2¢gg follows from (B3]). Lemma
shows that for any € > 0, the probability that p is smaller than 2gg — ¢ tends
to zero as r tends to infinity, thus proving the lower bound p > 2¢g. Lemma 3.3
shows that for any € > 0, if r is sufficiently large then we expect there to exist a
& with p-value at most 2g + ¢, thus proving the bound p < 2g. Lemma [3.9 shows
that we expect p > 2g — ¢ for the optimal £, which proves the bound p > 2¢g. O
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For very small values of r we are able to do a brute-force search for the smallest ¢
by testing all possible values of vy, ..., a5-1,81,...,85-1 in Step @ of Algorithm
We performed two such searches, one in dimension 2 and one in dimension 3.
The experimental results support our heuristic evidence that p ~ 2g is possible
with a smart choice in the algorithm, and that p =~ 2¢g is achieved with a
randomized algorithm.

Example 3.10. Take K = Q((5), and let & = {¢1, ¢2} be the CM-type of K
defined by ¢,,(¢5) = €*™™/>. We ran Algorithm 212 with r = 1021 and k = 2,
and tested all possible values of a1, 31. The total number of primes ¢ found was
125578, and the corresponding p-values were distributed as follows:

250007 2507
20000 200
15000} 150
10000 100

5000 50

3 4 6 g *

The smallest ¢ found was 2023621, giving a p-value of 4.19. The curve over
F = F, for which the Jacobian has this p-value is y? = 2° + 18, and the number
of points on its Jacobian is 4092747290896.

Example 3.11. Take K = Q(¢7), and let & = {¢1, ¢2, ¢3} be the CM-type of
K defined by ¢;(¢7) = €*™/7. We ran Algorithm BT with r = 29 and k = 4, and
tested all possible values of aq,as, 31, 32. The total number of primes ¢ found
was 162643, and the corresponding p-values were distributed as follows:

o

jus
8000} 250
6000] 200
150

4000]
100
2000] ©

0 P P

5 10 15 0 5 10 15

The smallest ¢ found was 911, giving a p-value of 6.07. The curve over F = F,
for which the Jacobian has this p-value is y? = 27 + 34, and the number of points
on its Jacobian is 778417333.

Example 3.12. Take K = Q((5), and let & = {¢1, ¢2} be the CM-type of K
defined by ¢;(¢s) = €*™/5. We ran Algorithm with r = 2160 4 685 and
k = 10, and tested 22° random values of ay, ;. The total number of primes ¢
found was 7108. Of these primes, 6509 (91.6%) produced p-values between 7.9
and 8.0, while 592 (8.3%) had p-values between 7.8 and 7.9. The smallest ¢ found
had 623 binary digits, giving a p-value of 7.78.
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4 Constructing Abelian Varieties with Given Weil
Numbers

Our Algorithm 212 yields g-Weil numbers 7w € K that correspond, in the sense
of Honda and Tate [10], to isogeny classes of ordinary, simple abelian varieties
over prime fields that have a point of order r and embedding degree k with
respect to r. It does not give a method to explicitly construct an abelian variety
A with Frobenius 7w € K. In this section we focus on the problem of explicitly
constructing such varieties using complex multiplication techniques.

The key point of the complex multiplication construction is the fact that
every ordinary, simple abelian variety over F = F, with Frobenius m € K arises
as the reduction at a prime over ¢ of some abelian variety Ay in characteristic
zero that has CM by the ring of integers of K. Thus if we have fixed our K as
in Algorithm [Z12] we can solve the construction problem for all ordinary Weil
numbers coming out of the algorithm by compiling the finite list of Q-isogeny
classes of abelian varieties in characteristic zero having CM by O . There will be
one Q-isogeny class for each equivalence class of primitive CM-types of K, where
@ and @ are said to be equivalent if we have & = &' o o for an automorphism
o of K. As we can choose our favorite field K of degree 2g to produce abelian
varieties of dimension g, we can pick fields K for which such lists already occur
in the literature.

From representatives of our list of isogeny classes of abelian varieties in char-
acteristic zero having CM by Ok, we obtain a list A of abelian varieties over F
with CM by Ok by reducing at some fixed prime g over q. Changing the choice of
the prime g amounts to taking the reduction at q of a conjugate abelian variety
which also has CM by Ok and hence is F-isogenous to one already in the list.

For every abelian variety A € A, we compute the set of its twists, i.e., all the
varieties up to F-isomorphism that become isomorphic to A over F. There is at
least one twist B of an element A € A satisfying #B(F) = Ng q(7 — 1), and
this B has a point of order r and the desired embedding degree.

Note that while efficient point-counting algorithms do not exist for varieties of
dimension g > 1, we can determine probabilistically whether an abelian variety
has a given order by choosing a random point, multiplying by the expected order,
and seeing if the result is the identity.

The complexity of the construction problem rapidly increases with the genus
g = [K : Q]/2, and it is fair to say that we only have satisfactory general methods
at our disposal in very small genus.

In genus one, we are dealing with elliptic curves. The j-invariants of elliptic
curves over C with CM by O are the roots of the Hilbert class polynomial of K,
which lies in Z[X]. The degree of this polynomial is the class number hy of K,
and it can be computed in time O(|Ag]).

For genus 2, we have to construct abelian surfaces. Any principally polarized
simple abelian surface over F is the Jacobian of a genus 2 curve, and all genus 2
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curves are hyperelliptic. There is a theory of class polynomials analogous to that
for elliptic curves, as well as several algorithms to compute these polynomials,
which lie in Q[X]. The genus 2 algorithms are not as well-developed as those
for elliptic curves; at present they can handle only very small quartic CM-fields,
and there exists no rigorous run time estimate. From the roots in F of these
polynomials, we can compute the genus 2 curves using Mestre’s algorithm.

Any three-dimensional principally polarized simple abelian variety over F
is the Jacobian of a genus 3 curve. There are two known families of genus 3
curves over C whose Jacobians have CM by an order of dimension 6. The first
family, due to Weng [I4], gives hyperelliptic curves whose Jacobians have CM
by a degree-6 field containing Q(¢). The second family, due to Koike and Weng
[5], gives Picard curves (curves of the form y* = f(z) with deg f = 4) whose
Jacobians have CM by a degree-6 field containing Q((3).

Explicit CM-theory is mostly undeveloped for dimension > 3. Moreover, most
principally polarized abelian varieties of dimension > 4 are not Jacobians, as
the moduli space of Jacobians has dimension 3g — 3, while the moduli space
of abelian varieties has dimension g(g + 1)/2. For implementation purposes we
prefer Jacobians or even hyperelliptic Jacobians, as these are the only abelian
varieties for which group operations can be computed efficiently.

In cases where we cannot compute every abelian variety in characteristic zero
with CM by O, we use a single such variety A and run Algorithm [ZT2 for each
different CM-type of K until it yields a prime ¢ for which the reduction of A
mod ¢ is in the correct isogeny class. An example for K = Q({2;) with p prime
is given by the Jacobian of y? = 2P + a, which has dimension g = (p — 1)/2.

5 Numerical Examples

We implemented Algorithm 212 in MAGMA and used it to compute examples
of hyperelliptic curves of genus 2 and 3 over fields of cryptographic size for
which the Jacobians are pairing-friendly. The subgroup size r is chosen so that
the discrete logarithm problem in A[r] is expected to take roughly 2% steps.
The embedding degree k is chosen so that 7%/9 ~ 1024; this would be the ideal
embedding degree for the 80-bit security level if we could construct varieties with
#A(F) = r. Space constraints prevent us from giving the group orders for each
Jacobian, but we note that a set of all possible ¢-Weil numbers in K, and hence
all possible group orders, can be computed from the factorization of ¢ in K.

Example 5.1. Let n = \/—2 + /2 and let K be the degree-4 Galois CM field
Q(n). Let & = {¢1,¢2} be the CM type of K such that Im(¢;(n)) > 0. We
ran Algorithm with CM type (K,®), r = 210 — 1679, and k = 13. The
algorithm output the following field size:

g = 31346057808293157913762344531005275715544680219641338497449500238872300350617165 \
40892530853973205578151445285706963588204818794198739264123849002104890399459807 \
463132732477154651517666755702167 (640 bits)
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There is a single F;-isomorphism class of curves over F, whose Jacobians have
CM by Ok and it has been computed in [I1]; the desired twist turns out to be
C:y? = —a° +32* + 223 — 622 — 32 + 1. The p-value of Jac(C) is 7.99.

Example 5.2. Let n = \/—30 +2v/5 and let K be the degree-4 non-Galois CM

field Q(n). The reflex field K is Q(w) where w = \/—15 + 21/55. Let ¥ be the
CM type of K such that Im(¢;(n)) > 0. We ran Algorithm with the CM
type (K, ®), subgroup size r = 2169 — 1445, and embedding degree k = 13. The
algorithm output the following field size:

g = 11091654887169512971365407040293599579976378158973405181635081379157078302130927 \
51652003623786192531077127388944453303584091334492452752693094089192986541533819 \
35518866167783400231181308345981461 (645 bits)

The class polynomials for K can be found in the preprint version of [13]. We
used the roots of the class polynomials mod ¢ to construct curves over F, with
CM by Og. As K is non-Galois with class number 4, there are 8 isomorphism
classes of curves in 2 isogeny classes. We found a curve C in the correct isogeny
class with equation y? = 2° + az2® + a2 + a1z + ag, with

a3z = 37909827361040902434390338072754918705969566622865244598340785379492062293493023 \
07887220632471591953460261515915189503199574055791975955834407879578484212700263 \
2600401437108457032108586548189769

az = 18960350992731066141619447121681062843951822341216980089632110294900985267348927 \
56700435114431697785479098782721806327279074708206429263751983109351250831853735 \
1901282000421070182572671506056432

a1 = 69337488142924022910219499907432470174331183248226721112535199929650663260487281 \
50177351432967251207037416196614255668796808046612641767922273749125366541534440 \
5882465731376523304907041006464504

ap = 31678142561939596895646021753607012342277658384169880961095701825776704126204818 \
48230687778916790603969757571449880417861689471274167016388608712966941178120424 \
3813332617272038494020178561119564

The p-value of Jac(C) is 8.06.

Example 5.3. Let K be the degree-6 Galois CM field Q(¢r), and let & =
{¢1, 2,63} be the CM type of K such that ¢,(¢;) = e*™™/7. We used the
CM type (K, ®) to construct a curve C' whose Jacobian has embedding degree
17 with respect to r = 2180 — 7427, Since K has class number 1 and one equiva-
lence class of primitive CM types, there is a unique isomorphism class of curves
in characteristic zero whose Jacobians are simple and have CM by K; these
curves are given by y2 = 27 + a. Algorithm output the following field size:

q = 15755841381197715359178780201436879305777694686713746395506787614025008121759749 \
72634937716254216816917600718698808129260457040637146802812702044068612772692590 \
77188966205156107806823000096120874915612017184924206843204621759232946263357637 \
19251697987740263891168971441085531481109276328740299111531260484082698571214310 \
33499 (1077 bits)

The equation of the curve C is y?> = 27 + 10. The p-value of Jac(C) is 17.95.
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We conclude with an example of an 8-dimensional abelian variety found using
our algorithms. We started with a single CM abelian variety A in characteristic
zero and applied our algorithm to different CM-types until we found a prime ¢
for which the reduction has the given embedding degree.

Example 5.4. Let K = Q(¢17). Weset 7 = 1021 and k£ = 10 and ran Algorithm
repeatedly with different CM types for K. Given the output, we tested the
Jacobians of twists of y? = x'” 4 1 for the specified number of points. We found
that the curve y? = z'7 + 30 has embedding degree 10 with respect to r over the
field F of order

q = 6869603508322434614854908535545208978038819437.
The CM type was

P ={¢1, b3, ¢5, b6, P8, P10, $13, P15},
where ¢,,((17) = €2™/17. The p-value of Jac(C) is 121.9.
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Almost Prime Orders
of CM Elliptic Curves Modulo p

Jorge Jiménez Urroz*

CRM, Universite de Montreal

Abstract. Given an elliptic curve over Q with complex multiplication
by Ok, the ring of integers of the quadratic imaginary field K, we analyze
the integer dp =gcd{|E(F,)| : p splits in Ok}, where |E(F,)| is the size
of the group of rational F, points, and prove that it can be bigger than
the common factor that comes from the torsion of the curve. Then, we
prove that #{p < z,p splits in Ok : dlE |E(F,)| = P} > z/(logz)?
hence extending the results in [I6]. This is the best known result in the
direction of the Koblitz conjecture about the primality of |E(F,)].

1 Introduction and Statements of Results

There is a rich literature in the study of the structure and size of the group of
points over finite fields of complex multiplication elliptic curves that is becoming
each day more extensive and diverse. One of the reasons to study these groups
comes from Cryptography. Indeed, In general, cryptosystems built over the group
of points of a certain elliptic curve guarantee a high level of security, with a lower
cost in the size of the keys, whenever the order of the group has a big prime
divisor. It is in this way that the problem of finding a finite field IF,,, and a curve
E/F, defined over the field, such that |E(F,)| has a prime factor as large as
possible, arose. In practice one can make a random selection of this pair of a
curve and field. However, the theory that one would need to analyse the utility
of this random algorithm is complex and neither clear nor complete. Suppose
E/Q is an elliptic curve defined over the rationals, and let E(F,) denote the
group of I, points of the reduced curve modulo p, a prime of good reduction,
(from now on we will restrict always to primes of good reduction). Somehow we
have to ensure that, for z sufficiently large, many of the elements of the sequence
A(z) = {|E(F,)| : p < x} have a big prime divisor. One important remark at
this point is that, since the reduction modulo p injects the torsion subgroup of
the curve E(Q)iors into E(F,) for almost all primes p, whenever this is nontrivial,
(for E or any of its isogenus curves), almost all the elements of the sequence /l(ac)
will have a small common divisor. In this sense, if d is this common factor, we
will be considering the more convenient sequence A(z) = {}|E(F,)| : p < z}.

* Partially supported by Secretarfa de Estado de Universidades e Investigacién del
Ministerio de Educacién y Ciencia of Spain, DGICYT Grants MTM2006-15038-
C02-02 and TSI2006-02731.
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This sequence has being widely studied in the literature. In 1988 Koblitz [19]
conjectured that for any elliptic curve over the rationals without rational torsion
in its Q-isogeny class, the elements in A4 not only have a big prime factor very
frequently, but in fact infinitely many of them are themselves prime numbers.
Concretely if we denote by IIg(z) the function which counts the number of
primes in A(z), then he claims that there exists a constant ¢ > 0, depending on
the curve, such that ITg(z) ~ cz/(logz)? as © — co.

But there are other reasons why one would like to know the factorization
of the elements in A(x). In 1977 Lang and Trotter conjectured that, given an
elliptic curve E and a nontorsion point P € F(Q), the density of primes p for
which P generates E(F),) exists. In these cases the point P is called a primitive
point. In particular they predict that the group of Fj,-points of the reduced curve
mod p is cyclic for many primes p. Since then there has been an extensive study,
either of the conjecture itself, or on the cyclicity of the group of Fp-points. A
few examples can be found in [3], [6], [I1], [20] or [24].

We could find lower bounds for the size of the prime factors, and ensure
cyclicity of the group, both at the same time, if we were able to prove that many
elements in A(x) are squarefree with a very small number of prime divisors. In
general we say that an integer n is P, if it is squarefree with at most r prime
factors and if » = 2 we say our number is almost prime. Finding P, numbers
among the elements of a certain sequence is at the heart of sieve theory. However,
it is important to note that, even though using sieve methods is the most efficient
way to attack this kind of problems, it does not provide, at least considered in
its classical way, lower bounds for the number of primes in certain sequences
due to the parity problem. In fact, when r = 1, although the result is known
on average, (see [2]), there is not a single example of a curve for which the
asymptotics predicted by Koblitz have been proved.

For r > 1, now with sieve equipment available, the situation is a little bit more
promising. Miri and Murty in [2I] proved, assuming the Grand Riemann Hipoth-
esis, GRH, that for curves without complex multiplication |{Pis € A(z)}| >
z/(logz)?. In [26], (see also [27]), Steuding and Weng improved the previous
result giving |[{Ps € A(z)}| > x/(logx)? for non-CM curves. They also proved
{Py € A(x)}| > x/(logz)? in the CM case, but always under GRH, and re-
cently Cojocaru in [7] proved unconditionally that for CM elliptic curves, with
d =1in A(x), {Ps € A(z)}| > =z/(logz)?. The best known result nowa-
days is due to Iwaniec and the author of this paper in [I6], were they prove
H{Py € A(x)}| > x/(logz)? for the elliptic curve y? = 2® — 2. The main object
of this paper is to complete the program initiated in this last reference, by ex-
tending the result to any curve with complex multiplication. Therefore we will
consider curves over Q with complex multiplication by O, the ring of integers
of the quadratic field K. Note that any elliptic curve over Q can only have com-
plex multiplication by one of the nine imaginary quadratic fields of class number
one, namely those with discriminant D = -3, —4, -8, -7, —11, —19, —43, —67,
—163. Hence, we can summarize the possible equations of CM elliptic curves as

v =2+ g%ax+¢°8, y*=12"+g, ory® =2"+ gz, (1)
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where ¢ is any integer so the equation is nonsingular, and « and 3 are fixed,
given in Table [ below. The first equation is for the case when D # —3,—4,
and the other two are the cases D = —4 and D = —3 respectively. Moreover,
we know that for any prime p of ordinary reduction, the number of F, points is
given by

[EFp)=p+1—(m+m)=N(r-1), (2)
for a certain 7 € Ok of norm N(w) = p. On the other hand, the reduction
is supersingular for any inert prime in K, i.e. any prime such that (f,’) = —1.

Let Ng be the conductor of the curve and let dg be the integer defined by
dg = gcd{|E(F)y)|,p splits in Ox.,p t 6Ng}. Observe that this integer depends
on the torsion of the curves in the isogeny class of E. Then, we can prove the
following result.

Theorem 1. Let E/Q be an elliptic curve with complex multiplication by Ok,
the ring of integers of the imaginary quadratic field K. For x > 5 we have

- 1
{p < x, p splits in O, s |E(F,)| = P2}| > x/(log x)?.

Theorem [I] is the natural generalization of Theorem 2 in [16], and the proof
goes exactly along the same lines of reasoning. However, when considering any
elliptic curve of complex multiplication, several interesting facts appear naturally
from this generalization which are covered in Section 2l First of all comes the
number dg. In general, in the complex multiplication case, we have a very precise
definition of the appropriate prime 7 to be chosen in ([2)), (see [25], [1I, [13], [23]).
From there we can deduce, (and we will do it below), that the integer dg can be
any of the divisors of 24 except 6 and 24. We will describe each of these cases.
Also, by looking at ([2]) we see that Theorem [ is clearly related to the Twin
Prime Conjecture, in this case, in the domain Ok and, hence, the theorem can be
considered as analogous to Chen’s celebrated theorem, now in the corresponding
domain Og. Hence, for the proof of the theorem, we will need to adjust the
switching principle of sieve theory to this context. This will be done by using
two generalizations of the Bombieri-Vinogradov theorem, first to the field K, and
then for P; type numbers in Of. For the former, as in [16], we will appeal to
[I7] which is suitable to our particular case. The second generalization we have
mentioned is the content of Proposition B] of Section [ below, (see Proposition 5
in [16]). It might be interesting to remark that, in order to improve the previous
results in [21], [26], and [7], apart from the Bombieri-Vinogradov Theorem, which
in this context is even more efficient that any version of the Riemann Hypothesis,
and the switching principle, one needs to increase the level of distribution in the
sequence by discarding the inert primes, (which contribute as squares).

Let us finish this introduction by mentioning the relation of Theorem [I with
the study of primitive points. Let E be an elliptic curve with positive rank, and
let P € E(Q) be a point of infinite order. From the work of Gupta and Murty,
[11], it is known that for CM curves and under the Grand Riemann Hypothesis,
(GRH), the set of primes such that P, the reduction of P mod p, generates
E(F,) has a density over the set of primes and it is also known that this density
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is positive in certain cases. But nothing is known unconditionally. In Section
[ we include some discussion of the (mild) consequences of Theorem [ in this
direction. Finally, Remark [Il is intended to show the more relevant impact of
the idea in Section [ in the inert case.

2  On the Integer dg

It is well known that the torsion subgroup of the elliptic curve F injects into the
reduction modulo p for all but finitely many primes p. In those cases, |E (Fp)]
will always be divisible by the order of the torsion, for any F in the isogeny
class of E. Moreover the restriction to primes in certain congruence classes, the
splitting primes, and hence of those m above them, could cause extra divisibility
in (@)). This is the role that plays dg in Theorem [l We devote this section to
present the precise value of dg = gcd{|E(F,)|, p splits in Ok ,p{ 6Ng}.

Proposition 1. Let E/Q be an elliptic curve with complex multiplication by
Og, defined by the equation y?> = 13+ gsx + gs, and conductor Ng. Then dg | 24
and its precise value is given in Table [l

Table 1. The integer dg in terms of the equation. Here g is any integer and we write
m to denote an integer such that there is no intersection between any two rows of
the table.

D (94,96) de
—4 (_9470)7(49470) 8
—4  (m?0),(—=m?0)

-4 (m,0) 2
-8  (=30g¢%, —564%) 2
-3 (0,¢%,(0,—-27¢°%) 12
-3 (0,m?) 4
-3 (0,m?),(0,—-27m?) 3
-3 (0,m) 1
—7  (—140¢%, —784¢%) 4
—11  (—105692, —13552¢%) 1
—19 (—608¢?%, —57764%) 1
—43  (—13760g%, —621264g°) 1
—67 (—117920g%, —15585808g%) 1
—163 (—34790720g%, —78984748304¢%) 1

The following corollary may be of independent interest.

Corollary 1. Let E/Q and elliptic curve with complex multiplication by Ok the
ring of integers of a field with discriminant —D > 7. Then the torsion subgroup
Eiors(Q) is trivial.
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It is interesting to observe that, in the cases where dg > 1, the curves have ratio-
nal points of torsion whose orders do not always coincide with dg. In other words,
dg does not come wholly from the torsion of the curve, but some part definitely
belongs to the complex multiplication. On the other hand, when considering the
integer ged{|E(F,)|,pt 6Ng}, i.e, considering every prime of good reduction, it
is indeed the order of the torsion subgroup. This can be easily checked with the
equation. It might be interesting to compare Proposition [l with Theorem 2 (bis)
of [I§]. Whereas that theorem is true only for a set of primes of density 1, here
we only need a set of primes of Cebotarev type, P, to ensure that whenever m—
divides |E(FF,)| for any p € P, then m comes from the torsion of the curve.

Proof (of Proposition ). We will split the proof into different cases depending
on the value of the discrimininant D of the CM field of the curve.

e Case —D > 11

It is clear that [(Ox /AOk)*| > 3 for any prime A € Ok. Note that this is true
since 2 and 3 are inert primes in any of these fields. Moreover +1 are the only
units so, if 7 = «(mod A) is a splitting prime such that neither o nor —a are
1 modulo A, then N, = N(m — 1) can not be multiple of [ for any choice of 7
above p, where N(\) = [. We know that there exist infinitely many such primes
p by Cebotarev’s theorem.

e Case —D =11

We first prove that 3 is not a common divisor of N, for every p. By [25] we know
that, for any given prime p of ordinary reduction, the number of points over [,
of the curve Eqy 4 defined by y? = 4a® — 264g°x — 847¢3 is given by

Np:p+1+(_§g) (ﬁ)u, 3)

where m = (u+wvy/—11)/2 is any prime above p so, in particular, 4p = u? + 1102
If we let «, 5 to be primes above 3 and 11 respectively, then 7 = m (mod «/3)
for some integer 0 < m < 32 coprime with 33. In this case 7 = m (mod dﬁ),
and so mu = p+m? (mod 33). Suppose g = —b? for some integer b. Then,
taking m = 13, p = 1 (mod 3), v = 2 (mod 3) and u = 4 (mod 11), and we get
N, =1 (mod 3). If, on the other hand, —g is not a perfect square, then choosing
m =1 we have p = 1 (mod 3) and u = 2 (mod 3) so N, = 2(1—(—g/p)) (mod 3).
It is now enought to choose 7 such that (—a/p) = —1 to get N, = 1 (mod 3).
Again the Cebotarev density theorem guarantees the existence of infinitely many
primes with the required properties in each case. In particular F1; , does not
have 3 torsion for any a. One can prove this fact easily by showing that 2P = —P
does not have rational solutions. Observe that, on the other hand, for any prime
p = 2 (mod 3) indeed 3|N, since, in this case, v = 0 (mod 3). For primes other
than 3 the argument is the same as in the previous case.
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e Case —D < 8

For the rest of the cases of Proposition[Il the arguments are very similar and rely
upon three facts, namely Cebotarev’s theorem, the formula N, as a norm in the
corresponding field of CM, and the explicit formula for the number of points N,
in terms of characters. Then, straighforward calculations, similar to those made
in the previous cases, give the results shown in the table of the proposition. We
omit these calculations since they can be easily performed by the reader. We
recall that in these cases the only primes that can divide dg are 2,3, and 7 in
the case D = —7. The argument to discard higher powers of 2 and 3 is also
achieved by a proper selection of primes in O in certain aritmetic progression.
We will include the explicit formula for the number of points for the convenience
of the reader. In any event this formula can be found in either [25], [1] or Chapter
18 of [I3] for the case D = —3, —4, and any of these references would also make
interesting reading. In particular, in [23], an explicit formula for the number of
points is given, which is valid for CM curves either defined over a field extension,
or with a ring of endomorphisms that is strictly smaller than the maximal order
of the field.

In order to state the formula we will use the following convention: a prime
7€ Ok, m = (u+vyD)/2, is primary if 7 = 1 (mod 2(1 +4)) and K = Q(v/—1),
if 7 =2 (mod 3) and K = Q(y/—3), or if Re(w) > 0 in all other cases. Then, for
the elliptic curve F := y? = 2% + g4z + g6 and a, = p+ 1 — N, we have the data
in Table

Table 2. Formula for the number of points over IF, in terms of the equation; here
()m is the m-th residue symbol, x»s(g) = —(g/p)(—=1)*(=1/U)u for U = u/2, and
k= [p/8], and xx,a(g9) = e(eg/p)(u/d)u with e = (—1)(Ul2’1>/2 for the rest

D (94, g6) ap
D=-3 (0,9) —()em = (F)e7
=—4 (-9,0) (2),7m+(3),7
D=-8 (-5-2¢°/3,—14-22¢%/27) Xm.8(g)u
D=-7 (=5-7¢%/16,-7%¢%/32) Xr7(9)u
=11 (-2- lg /3, —7-11%g%/108) X, 11(g)u
D=-19 (=2-19¢4% —19%¢%/4) Xr.19(9)u
D=-43 (-20- 439 ,—21-43%g%/4) Xr.43(9)u
D= —67 (—110-67¢* —217-67%¢>/4) Xr.67(9)u
D = —163 (—13340 - 163g%, —185801 - 163%¢%/4) xr.163(9)u

3 A Weighted Sum for the Sieve Problem

We start with the notation that will be used later. From now on E/Q, given by
the equation y? = 22 + ag?x + B¢> as in Table[] is a curve of complex multipli-
cation by Ok, the maximal order in the field K. To simplify the computations



80 J. Jiménez Urroz

we will consider (6, g) = 1. As usual, for any sequence of rational integers C', and
a positive number x, we have C(x) = {¢ € C : ¢ < z}, and |C(x)| is the number
of elements in the set. Given an integer d, the set Cy = {c € C' : d|c} consists of
the elements of C' which are multiples of d and S(C,d) = [{c€ C : (¢,d) = 1}
is the number of elements in C' coprime with d. Analogously we define €5 and
S(¢,6) for € C Ok and § € Ox. We will also make several useful conventions.
From now on A, A1, Ag, ..., denote primes in Ok and [, l1,ls,... the rational
primes below them; similarly p, po, p1, p2, ps will be rational primes that split in
Ok, and 7, mg, 71, T2, T3 will denote primary primes above them. On the other
hand ¢ will be an inert rational prime inert. Finally px will denote the unique
rational prime which ramifies in O . Let

Piz)= ] pandQx) = ] «

p<z q<z
p, split q, inert

where the products refer to the corresponding domain Ok we are considering in
each case. As mentioned in the introduction, the proof of Theorem [ goes along
the line of Theorem 2 in [16], hence we give only a sketch of the proof, which
can be completed with the details given there. We first translate the problem in
terms of integers in the domain Ok. Let §g = 2(1+1), (1+i)?, 141, /—2, 2¢/—3,
2,v/=3, (1++/=7)/2, be an integer in the corresponding O with N(6g) = dg
whenever dgy > 1, and 6 = 1 otherwise. Let x.(FE) be the character as given in
Table 2 and let o be such that for any 7 = ag (mod égg), x=(E) = ¢ € O} is
constant and ((m — ¢)/6r,0rg) = 1. The existence of this aq is guaranteed by
the corresponding reciprocity law in each field whenever (6, g) = 1. Consider

P(z) = {7 prime , 77 < x, ™ = ap (mod égg)}

and the sequence, (to be sifted later),
—<
A(z) = {a: N (T;E ) , TE ’P(m)}
Observe that, in this case, ”E;C is indeed an integer which is coprime with gdg.

Also let
S(z) = Z 1.
PyeA(x)

Then it is clear that S(x) is a constant times the left hand side of the inequality
in Theorem [I] and, therefore, it suffices to prove that

S(x) > x/(logz)?. (4)

Consider now the weighted sum given by

1 1
W= > 1= X, >

acA(x) pola 2 a=p1P2P3 2
(a,P()Q(2)pg)=1 z<po<y z<pgsy<p2<ri
1 1

R I YD DR LD DR
2 2

a€A(x) 2<po<y apg€.A(x) z<p3<y<p2<p1

(a,P(2)Q(2)pg)=1 (a,P(2)Q(2))=1 p3p2p1 €A(T)



Almost Prime Orders of CM Elliptic Curves Modulo p 81

= Wa(a) — , Wale) — | Waa), (5)
where z = /% and y = 2'/%. As in [I6], any term with positive weight in W (x)
is either P, or divisible by some nontrivial square, and the contribution from
non-squarefree elements is negligible. So, in order to prove the theorem, we need
the estimation

W(z) > z/(logx)%.

We will estimate W1 (z), Wa(x), Ws(z) separately.

4 Lower Bound for Wi(x)

Wi (x) is the classical sieve sum and, hence, to estimate it we need to control
|Ag(z)|. Using Lemma 3 of [16], we can reduce the study of |Ag(x)| to that of
S(A(x), k) for k|d, where

A(z) = {”6;4 : WEP(J@)}.

We now introduce a slight modification of the generalization of the Bombieri-
Vinogradov theorem to imaginary quadratic fields, given by Johnson in the corol-
lary on page 203 of [I7]. In particular, for a general ideal a € Ok, and integer
a € Ok, we write

(z;a,a) = Z 1,

w=a(mod a)
TEP(x)

and IT'(x; a, «) will be the analogous sum but restricted to primary primes.

Proposition 2. Let g € Z and let oy be an integer in O . Then we have

‘07(‘ / T
E 1 (z; — I (x; 6
ot g |10 )7 g TG0 € pya O
(a,9)=1

where Q = \/x/(logx)?, and ®(a) = |(Ok /a)*|. Here A is any positive number
and B and the implied constant depend only on A.

Proof. The proof follows from the corollary on page 203 of [I7] and the triangle
inequality.
Following the same reasoning as in Section 4 of [I6], we get

[Ad@)] = 1123859, 00(d) + 7o) = 17 1/ g. )@+ rate), (0

where h(-) is a multiplicative function such that h(l) = 0 for any prime l|g by
our selection of ag, h(p) = 2/(p — 1) + O(1/p?) for splitting primes and for all
other primes ¢ we have h(q) = 1/(¢*> — 1). Moreover

Yo @< C (8)

d</2/(log ) (log )
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Given that precisely half of the primes split in Ok, we deduce that the density
function h(-) satisfies the linear sieve assumption

() () 2 T < (222) (e 2)

for some constants L1, Lo. Thus, by () and (@), we can apply the linear sieve to
A(z) with level of distribution D(z) = /z/(logx)? to deduce, by the Jurkat-
Richert Theorem, (see end of Section 4 [16]), that the inequality

1 0%
W > 71 —
1(x) > (26 og3 5) o(6p)

is valid for any € > 0 and for z sufficiently large in terms of e.

II' (x5 g, )V (2), (10)

5 Upper Bound for W,
Now, instead of A(x), the sets to consider in the sieve process are
Ap, (¥) = {a € A(z) : pola},

for each prime pg in the interval (z,y]. In this case the number of elements in
A, divisible by d is precisely

O] II'(z; g, ap)h(dpo) + Tap, ()

¢(0k)

for h(-) and r(-) as in (). Now the level of distribution is D(x)/po and again by
Jurkat Richert and () we get

| Adp, ()| =

*

> 12 UK w00V Etm) (F () +o(0). (1)
acApg (@)

(a,P(2)Q(2)pg)=1

where s, = log(D(x)/po)/ log z, and F(s) = 2¢7s~! for any 1 < s < 3. Summing
over all primes, and using partial sumation we obtain, (see Section 4 of [16]),

(%3
<P(5E)

for any € > 0, and z sufficiently large depending on €.

Wa < (jelog6+2) | K 11 (xsg.00)V (2) (12)

6 Upper Bound for Wj3(x)

Finally we have to control W3(x) which counts the number of elements a in
A(x) such that a = p1paps for splitting primes in a certain range. Consider the
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set P (z) given by tuples (71, w2, m3) of primary primes such that z < N(73) <
y < N(ma) < N(m), and mmams = E(ag — ¢)/6p (mod g), and let

B(z) ={N((+w) : we 2x)},
where
2(z) = {w = dgemmams : € € O, N(w) < z, (71,72, 73) € P()}.

Then,
Wiz)< > 1+0(a),

beB(z)
(b, P(V2)Q(va))=1
and we may now apply sieve theory to the sequence B(x), in this case with a
new sieve parameter zo = v/x. Again we need to estimate |Bg(x)|, the number of
elements in B(x) divisible by d|P(y/z)Q(y/x). If (d,égg) > 1, then the set By(z)
is trivially empty. For any other d we proceed as before and note that finding
an upper bound for W3(x) boils down to estimating

Bo(x) = Y. L. (13)

weN(x)
w=—((mod ?)

For this purpose we need an analogous Bombieri-Vinogradov Theorem for the
numbers in the set £2(z). If we let

1
E(z;a,a) = E 1- (a) E 1.
we(x) wen(z)
w=a(mod a) (w,a)=1

then we can prove the following proposition.

Proposition 3. Let the notation be as above, and x > 0. We have

> max |E(z; 0, 0)] < (14)

- A2
Nz @)=t (log x)

with Q = v/x/(logz)B. Here A is any positive number and B and the implied
constant depend only on A.

The proof is exactly as Proposition 5 in [16], though in this case we consider, more
generally, characters over (O /a)*. It might be interesting to observe that, since
7 is in a fixed congruence class modulo 6gg, we are considering triples my, mo, 73
such that m = &(ap — ¢)/(6pmsm2) (mod g), (note that it follows immediately
that any number ¢ +w = ¢ (mod 6g)), and, as there is no restriction in o, 73,
this does not affect the Siegel-Walfisz type theorem for 73, (Inequality (20) on
p. 11 in [I6]).

Given the above proposition we can write

[Ba(x)| = [£2(z)[h(d) + va(z),
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where h(-) is the same multiplicative function appearing in A4(x), and so, by
Jurkat Richert, we get

e’y
Wa(z) < [T (1= hO)|R(@) {F(1) +o(1)} < o V(@)I2(@) {1 +o(1)},
<z
where we have used F(s) = 2¢7s~! as in (), and ([@). To complete the proof

we just have to compare |2(x)| with SL%;;I) II'(x; g, 0)V (2), appearing in (I0)
and ([I2). By definition we have
12(2)] < 0%| > > ' (z/(dp|msmal* g, €)
z<| w32 <y <|ma|2 <z /|75 |2

where & = &(ag — ()/(6gmams) (mod dgg). Asymptotically, as @ goes to infinity,
the above is the same as

‘07(‘ . log z
dE H<$1g7a0) Z Z

2 217
c<ralt <y <lmalf cya/lng] 73721 108(2/ (Tam2l)

A new application of partial summation, together with a change of variables, as
in the deduction of (I2), gives

1 1—v
() 3 2 1 dud
T i A A U e | I @ g 00).
E 3; é —UuU—v uv

It remains to combine the previous results, and note that dg > ¢(6g) to get
ce”

Ws(x) <

@) < <290(5E)
for some ¢ < 0.36308373. Hence Theorem [Tl follows on using ([I0), (I2), and (3]
in ([@).

O3] + ) 1T (w:9. a0)V (=), (15)

7 On Primitive Points

Let £/Q be an elliptic curve with CM by O, with positive rank and equation
given by (). For simplicity we restrict ourselves to D # —3,—4, —7,—8. Let
p < x be prime, P € E(Q) of infinite order, and P the reduction of P mod p.
As mentioned in the introduction, it was conjectured by Lang and Trotter that
P generates the full group E(F,) for a positive density of primes, and this is not
known unconditionally in any case. However, in [I1] the authors, among other
very important results, included an approach to the problem in the following
direction, (see Lemma 14 and 17 in that reference).

Theorem 2. (Gupta-Murty) Let E/Q be a CM curve with positive rank and let
P € E(Q) be a point of infinite order. Then,

<gz,qginert :|<P>|<a'/3 <«  and
#la<w,q

#{p<a,psplits : | <P >|<a/? )<l
for any e > 0.
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In particular for almost all primes the point P generates a group of order at
least /3¢, Here, it might be worthwhile to include the following remark.

Remark 1. Let E/Q be a CM curve with positive rank and let P € E(Q) be a
point of infinite order. Then,

#{g<z,qinert : | < P>|>z""} > 2/(logx)?

To be precise, this remark does not belong properly to the theory of elliptic
curves, but to the classical twin prime conjecture. Indeed, we eed only to consider
the sequence Aq(z) = {(¢ +1)/2 : ¢ < =, inert in Ok} and, the result is
the consequence of the best estimates in the constant C' such that A, (z) >
Cz/(logx)?. One can find this type of bounds in [4], and it is also possible to
get an even better result with the subsequent paper [29]. Although the bounds
in these references hold for the sequence p + 2, the arguments can be translated
in a straighforward manner to our sequence A, (x). We can also apply the same
reasoning, this time to primes splitting in K, using Theorem [[l Indeed, we have
proved in Theorem [Il that the number of P in the sequence A(x) of Section
is bigger than

¢ [0 1w g,00)V (2), (16)
for some constant C'. On the other hand, the number of elements counted in
S(A, P(2)Q(2)px), with some prime factor between x/3 and z° is exactly the
sum Ws(z) but now with parameters,é,ﬂ and so, it is bounded by the constant

e / £ log =

2 S8 log(x/t?)tlogt
One has to choose [ appropriately to make this quantity smaller than C.
Consider now

Ap(z) ={a € A(x),a = Py, (l,a) =1 for | < z or '/® < 1 < 2P},

then, we can conclude that |Ag(z)| > z/(logz)?. When reducing the curve
modulo the primes p counted in Ag(x), and of size about =, E(F,) must have
one of its two prime factors bigger than 2, since both cannot be smaller than
2'/3. On the other hand, by Lemma 14 of [I1], the point P has to have order
bigger than x'/3 and, hence, bigger than z” since it has to be a divisor of a
which gives us the corresponding improvement. Although the parameter § that
is obtained in this way is much worse than the 1/2 — ¢ that we deduce from
Theorem[2 it is worthwhile to note that, while the theorem ensures the existence
of a subgroup of E(F,) of big order, the one generated by P, the nature of the
sieving procedure to obtain the elements in Ag(x) guarantee that, in those cases,
every subgroup of E(F,) has to be big, at least of size x'/%. In order to prove
the remark, one proceeds in the same way but now with the sequence (¢ + 1)/2
and, instead, using the depper sieve techniques as developed in [4], [28] and [29]
to get a much better result for the analogous constant C' in (IG]).
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Efficiently Computable Distortion Maps
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Abstract. Efficiently computable distortion maps are useful in cryp-
tography. Galbraith-Pujolas-Ritzenthaler-Smith [6] considered them for
supersingular curves of genus 2. They showed that there exists a distor-
tion map in a specific set of efficiently computable endomorphisms for
every pair of nontrivial divisors under some unproven assumptions for
two types of curves. In this paper, we prove that this result holds using
a different method without these assumptions for both curves with » > 5
and r > 19 respectively, where r is the prime order of the divisors. In
other words, we solve an open problem in [6]. Moreover, we successfully
generalize this result to the case C' : Y2 = X2 1 1 over F, for any g
s.t. 2g + 1 is prime. In addition, we provide explicit bases of Jacc[r] with
a new property that seems interesting from the cryptographic viewpoint.

1 Introduction

Let C' be a nonsingular projective curve over a finite field IF, and let e be a nonde-
generate bilinear pairing on its Jacobian Jacec[r] for a prime 7 s.t. 7 | fJacc(F). A
distortion map [I3] for two nontrivial D and D’ in Jacc|[r], is an endomorphism
¢ on Jace s.t.e(D,p(D’)) # 1. We say that a curve C' is supersingular when
Jace is supersingular. Galbraith et al. [6] showed the existence of a distortion
map for supersingular curves (See Theorem [). In cryptography, an efficiently
computable distortion map is important, however, its existence has not yet been
established for the higher genus curves ([5lf], see [7] also). We will solve an open
problem given in [6] on the topic.

An elliptic curve E : Y? = X3 +1 over F,, where p is prime and p = 2 mod 3,
provides a good starting point for understanding the problem. Let D* be a
nontrivial point in E(F,)[r] where a prime r > 3, and let an automorphism p on
Ebe (z,y) — (Cz,y) using a third root of unity ¢ in 2. Because p(D*) ¢ E(F,),
the set {D*, p(D*)} is a basis of E[r] = (Z/rZ)?. Then e(D*, p(D*)) # 1 since
dimg, Efr] = 2. Thus, p is a distortion map for D* and D*. The elliptic curve is
the first in a sequence of supersingular curves C': Y? = X% + 1 over F,, where
w = 2¢g + 1 is prime and p mod w is a generator of F? . Their Jacobians also
have a similar action p of a w-th root of unity ¢ in [F,2¢. In fact, we will show
that an analogous result for p holds for the higher genus curves (Corollary [2)).
However, the argument is not as simple as the genus 1 case.

A.J. van der Poorten and A. Stein (Eds.): ANTS-VIII 2008, LNCS 5011, pp. 88 2008.
© Springer-Verlag Berlin Heidelberg 2008
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Let 7 be the p-th power Frobenius endomorphism on Jacc. Then A = {rn?p/ |
0 <i,j <2g— 1} provides a set of natural candidates for a distortion map for
a pair of nontrivial divisors. Galbraith et al. [6] considered the genus 2 case —
C :Y? = X%+ 1 over F, where p = 2,3 mod 5 — in detail. They showed that
there exists a distortion map in A for every pair of nontrivial divisors under
some unproven assumption. For the details of the assumption, see Section B}

We prove that the generalization of their result holds for the above curve of
general genus g > 1 without the unproven assumption with r > w (Theorem ).
We take a different approach from that of Galbraith et al. to solve the problem.
First, we construct explicit eigenvectors of m described by Gauss sums. Using
arithmetic properties of the Gauss sums, we then show the above result. As a
corollary, we prove that the above assumption given in [6] holds (Corollary [I).

Galbraith et al. [6] also treated a supersingular curve over a finite field of
characteristic 2, C' : Y24+Y = X°+ X34+ where b € Fy. They showed the
existence of a distortion map in A for every pair of divisors under a similar
unproven assumption, where A is a set of natural candidates for the distortion
map as given above. We also prove the existence result without the assumption
when 7 > 19 (Theorem [I0, See Corollary [ also).

While obtaining the above results, we will obtain explicit bases, which we
call efficiently constructible semi-symplectic bases of the Jacobians for the Weil
pairing. These bases are the first explicit constructions with explicitly known
relations among the discrete logarithms of all Weil pairing values as far as we
know. For the above curve C': Y2 = X" 41, a key step to obtaining the explicit
basis is to describe such relations in terms of Jacobi sums (Theorem [7). These
bases seem useful for some applications using a rich torsion structure ([43]).

Section ] reviews notation and facts related to circulant matrices. Section
defines notions regarding distortion maps from computational and constructive
viewpoints, and summarizes the previous results of Galbraith et al. Section [
proves the above results for the curves C' : Y2 = X% + 1 where w is an odd
prime and r > w. Section [l shows the results for the curves over Fy in [6].

2 Circulant and Related Matrices

We fix notation and summarize facts on circulant matrices. See [2] for details.
Set

1 Lo 1 o t1-- tnaa
Vo U1+ Un—1 tn—1 tO cotpg
V= ) . ) and I'= L ) . (1)
/U(T)lil v{t*l - ,UZ:% tl t2 e tO

We recall that the n x n matrix V' = V(vp,v1,...,v,-1) is a Vandermonde
matrix. The matrix I = circ(to, t1, ..., tp—1) in (), with i-th row the (i — 1)-th
cyclic shift of its first row, is a circulant matrix.
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The (7,7)-entry of I" is tj_; mod n, and is in a finite field F in this paper. If
n # 0 in I, the eigenvectors of the circulant are given by

‘ T

Z; =12 (1,31, . ,3<“*1>Z) L i=0,....n—1, 2)

where 3 is a primitive n-th root of unity in F, n='/2 € F, and the superscript T
denotes transposition. Then the corresponding eigenvalues are given by

n—1
M= ted™,  i=0,...n—1, (3)
k=0

respectively. Let a diagonal matrix ¥ be diag(no,...,nn—1), and let a matrix V'
be V(1,3,...,3" ') = (20, -+, Zn—1). In particular, det(V) # 0 when n # 0 in
F. Then I'V = VW. In other words, ' = V¥Vt and ¥ = V- II'V.

3 Efficiently Computable Distortion Maps

In this paper, let C' be a nonsingular projective curve over a finite field F of genus
g and let 7 be an odd prime number s.t.r | fJacc(F). In addition, let e = e, be a
bilinear nondegenerate pairing on Jacc[r] whose values are in the multiplicative
group p,. of order 7 in some extension of F. For readability, we hereafter use the
simple notation e, not e,. We denote the zero in Jacc[r] by O.

3.1 Results of Galbraith et al. [6]
According to [0], we define the notion of a distortion map as follows.

Definition 1 ([6]). For a nondegenerate pairing e on Jacc[r] and two points
D and D' in Jacc[r], an endomorphism ¢ on Jaco is a distortion map for e,
D, and D' if e(D, (D)) # 1.

The next Theorem [[lis Theorem 2.1 given in [6], and it assures the existence of
a distortion map on a supersingular Jacobian variety of a curve C' ([6] proved it
for a supersingular abelian variety in general).

Theorem 1 ([6]). Let Jace be supersingular, and let e be a nondegenerate pair-
ing on Jacc[r]. For every pair of nontrivial D and D’ in Jacc|r], there exists a
distortion map ¢ on Jace, i.e.,e(D,p(D’")) # 1.

Galbraith et al. [6] showed that the endomorphism ring End(Jacc) of a supersin-
gular Jacobian variety has Z-rank (2g)2. Therefore, to clarify our presentation,
we define a new notion of a complete set of distortion maps here.

Definition 2. Let A be a subset of End(Jacc) s.t.#A < (2g)%. The set A is a
complete set of efficiently computable distortion maps on Jaca[r] if Jaca[r] =
(6(D) | 6 € A) spaned as an F,-vector space for every nontrivial divisor D €
Jaco(r], and if all § € A are efficiently computable (or polynomial-time com-
putable, formally).
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Remark 1. If A is a complete set of efficiently computable distortion maps, then,
for every nondegenerate pairing e, we can efficiently (or in polynomial time) check
which ¢ € A is a distortion map for a given pair of divisors of order r. This gives
an efficient algorithm for constructing a distortion map given in Theorem [I]

One of the goals in [6] was to find a complete set of efficiently computable
distortion maps for the following curves.

For a supersingular curve C' : Y2 = X® 4+ 1 over F, where p = 2,3 mod 5,
Q-coefficient endomorphism ring End®(Jace) := End(Jacc) ®7 Q is Q[p, 7] (See
[6]). Here, m is the p-th power Frobenius endomorphism, and p is the action
of a fifth root of unity ¢ = (s, i.e.,p : (x,y) — ((z,y) on Jacc. We notice that
End(Jacc) is not necessarily equal to Z[p, 7]. Therefore, Galbraith et al. [6] made
Assumption [ for the completeness of A = {7p/ | 0 <1, < 3}.

A distortion map ¢ in Theorem [lis given by ¢ = >, -3 Nijmip? where
Ai.; € Q. Let m be the least common multiple of denominators of A; ; (0 < i,j <
3). Then m¢ € Z[p, w]. In [6], the following Assumption [I] was made for m, and
under Assumption [l they showed the following Theorem 2

Assumption 1 ([6]). The above ¢ may be chosen s.t.ged(m,r) = 1.

Theorem 2 ([6]). Under Assumption[dl (for a nondegenerate pairing), A is a
complete set of efficiently computable distortion maps on Jacc|r].

We prove that the above theorem holds without Assumption [l when r > 5 in
Theorem [ in Section [ (See Corollary [ also). We notice that r > 5 in typical
cryptographic applications.

They also discussed efficiently computable distortion maps for another type of
curves. For m s.t.m = 1 mod 6, let ¢ be 2™. A curve C : Y2 +Y = X°+ X3 +b
over F, where b = 0 or 1 is a supersingular curve of genus 2. Endomorphisms
0s,00, and o¢ (given in Section [B.]) are efficiently computable on Jacc. They
then proved an analogous result to Theorem [l under a similar assumption for
the curve C' and 7, that is, the completeness of A = {7, 7o, m0g, 7loe | 0 <
i,J, &, | < 3} where 7 is the ¢-th power Frobenius. We also show the completeness
of A without that assumption when r > 19 in Theorem [I0 in Section [

3.2 The Notion of an Efficiently Constructible Semi-symplectic
Basis

In addition to proving the completeness of A as above, we will obtain interesting
bases of Jacc[r]. We call them efficiently constructible semi-symplectic bases.

Definition 3. A basis {Dy, ..., Dag_1} of the F-vector space Jacc[r] is an effi-
ciently constructible semi-symplectic basis for a nondegenerate skew-symmetric
pairing e if e(D;, D;j) = 1 when i#2g9—1—j, and e(D;, D;) = u when i=2g—1—j
and i =0,...,9—1 for some u#1€p,, and there is an efficient algorithm that
outputs the basis taking the parameters of the curve C, r, and e as input.
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Let B be an efficiently constructible semi-symplectic basis. We can calculate the
discrete logarithm of e(D, D’) to the base u when we know the coefficients of
D and D’ expressed in terms of the basis B. The bases in Sections 4] and
are the first explicit constructions with this property as far as we know. In the
last section of [4], Galbraith et al. suggested a possibility of a new application of
pairing with the “rich torsion structure.” Our explicit constructions will provide
a basic tool for such an application.

3.3 Invariance of the Weil pairing

The main results in this paper (in Sections [ and [l) are based on the following
Fact [l It shows the invariance of the Weil pairing under the diagonal action of
an automorphism. For a proof of Fact [ refer to [11] p.186 and [10] p.132.

Fact 1. Let e be the Weil pairing. Then e(D,D’) = e(¢(D),¢(D")) for all D
and D' € Jacc[r], and all automorphisms ¢ on Jacc.

4 Curves with Actions of Roots of Unity

Let g be a positive integer s.t.w := 2g + 1 is prime, and let p be a odd prime
s.t.p mod w is a generator of ;. We consider a curve

C:Y2=X"+1

over F,,. Then C' is a supersingular curve of genus g. Since #Jacc(Fp) = p9 + 1,
set a prime r s.t.7 | p? + 1. Therefore, the embedding degree k for r is 2¢, and k
is also the full embedding degree (cf. [12]). In other words, Jacc[r] C Jaco (F ).

In this section, we show that the natural generalization of Theorem [2] holds
without any unproven assumption when ged(r, 2gw) = 1 (Theoreml]). Moreover,
we obtain an efficiently constructible semi-symplectic basis of Jacc[r] in Section
A Certainly, as given in [0], the results in this section can be generalized to
the twists Y2 = X% + A of C where A # 0. Hereafter, we consider the case that
ged(r, 2gw) = 1. This holds when r > w = 2¢g + 1, which is always satisfied in
typical cryptographic applications.

See Chapter 5 in [J] for the facts about Gauss and Jacobi sums used in Sections

ET and E4] for example.

4.1 Bases B and B of the Vector Space Jacc[r] over F,

First, we choose a nontrivial divisor D* in Jacc (F,)[r]. Then let D; be wlp(D*) =
p® (D*) where i = 0,...,2g — 1. Here, 7 is the p-th power Frobenius map,
a = p mod w, and p is the action of a w-th root of unity { = (y, i.e,p :
(z,y) — (Cx,y). Let B be {D; | 0 < i < 2g — 1}. Next, we define divisors
D == 29 p9)'D; (j = 0,...,29 — 1) using a Vandermonde matrix V =
V(1,p,p%...,p%97 1. Let B be {51 |0<i<2g—1}.
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Theorem 3. Suppose that ged(r, 2gw) =1 Z’hen both B and B are bases of

the F.-vector space Jacc[r]. Moreover, D; (€ B) is an eigenvector of m with the
eigenvalue p~* where i =0,...,2g — 1.

Proof. Because w(D;) = D1, we see 7r(l~)j) = p‘jl~)j. Then we will prove
5j # O for 5j to be an eigenvector of 7. Let y be a nontrivial additive character
@), and let ¥ be a multiplicative character (B) of F,, of order 2g since p is of
order k = 2¢g in F.

X :Fy 30— p” € (F,[p])" C End(Jace) @z F,. (4)
Y :F, =(a)>a—pe(p CF, (5)

and 1(0) := 0. The values of x are in the group (F,[p])* of units in the commuta-
tive subring generated by p in End(Jace)®zF, where p¥ = 1. Since D; = p”iD*,
then D; = 2ot (pj)lpaiD*. The operator Y;7;" (pj)lpai is a Gauss sum
G(¥7, x) of a multiplicative character ¢/ and an additive character y. That is,
Dj = G(,x)D*. Since Gy, x)G(4, x) = ¥ (=1)w = (=1)w in F,[p] and
r # w, therefore G(y~7, X)D; = (—1)YJwD* # O. Thus, D, is an eigenvector
of m with eigenvalue p~7. Since the order of p in Fr is k = 2g, the eigenvalues

p~7 are different from each other. Therefore, B is a basis of Jacc|[r]. Because
2g # 0 mod r, then det(V') # 0 (See Section [2)). Hence, B is also a basis. O

4.2 Completeness of A

Lemmal[Il gives basic relations of 7 and p, and that lemma is a slight generaliza-
tion of Lemma 4.2 in [0].

Lemma 1. Let 7 and p be as in Section[[d} Then n‘p’ = p? it for all l,j € Z.

Proof. From the definition of @ = p mod w, 7‘p = p‘IKWZ holds for ¢ > 0 (and j =

1). Then by induction for j(> 1), when £ > 0, n°p’ = n’p/~1p = p“é(j_l)ﬂlp =

paz(jfl)pazﬂe = p“gjﬂ'z. Since 7tp7 = p“gjﬂe if and only if 7p~7 = p*azjﬂ'e, then

for negative j and positive ¢, Lemma holds. For negative ¢ and any j € Z, using

¢ = —{ > 0, we must show that p/7? = ﬂglp“%lj. Let j' be a™*'j € Z/wZ. Then
v

the equality is pal i'qt =gt pj/ where £/ > 0. This has been proved already. 0O

Theorem 4. Suppose that ged(r,2gw) = 1. Then A = {nip’ | 0 <i,j <2g—1}
is a complete set of efficiently computable distortion maps on Jacc|[r].

Corollary 1. We can choose ¢ with m = 1 in Assumption [ when v > 5.

Proof of Theorem 4. We show that Jacc[r] = (8(D) | 6 € A) as an F,-vector
space for a nontrivial D € Jacc[r]. Expressing D as a linear combination of l~)j,
D= Zj c;j 5j where some c; # 0 because D # O. We then define generalizations
of the trace map Tr = Try ,, /5, = 3, m'. Let Prj be Y, pUn for j =0,...,29—1
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(then Tr = Pry, and see also Remark after Lemma 3.2 in [5]). By a simple cal-
culation, Pr;(D,) is O if j # x, and is 2¢D; if j = r. Let T; be G(¢~7, x)Pr;
using the operator G(1~7, ) in the proof of Theorem [l Here by definition,
T; is in the noncommutative ring F,[r, p]. Then T} (D ) =G, x)Pr; (D ) =
(—1)j29wD* # O, and T;(D) = (=1)2gwe; D* = ¢;D* # O because ¢; # 0.
Thus, Jacc[r] = (p'(Tj(D)) | i = 0,...,2g — 1) by Theorem The endomor-
phism p*T; is an F,-linear combination of elements in A by Lemma [[I Then,
Jacc[r] = (6(D) | 6 € A). |

4.3 Representation of the Weil Pairing Matrix by a Circulant
Matrix

To obtain an efficiently constructible semi-symplectic basis of Jaca[r], first, we
show that the matrix of logarithms of the Weil pairing values of D;’s where

1=0,...,2g9 — 1 is essentially reduced to a circulant matrix.
Let w; ; be e(D;, Dj) for (i,7) s.t.0 < 4,5 < 2¢g — 1. Then we consider the
matrix W := (log,(ui ;))i; where u is e(D*,Dy) and log, f is an integer s

st. f =u® If f # u® for any integer s, then log, f is undefined. However, we
prove that log, (u;,;) in F, can be defined in Theorem [l We call W the Weil
pairing matrix of B to the base u where B = {D;}.

For k =1,...,29 — 1, let hy be a” — 1 mod w (# 0), and let ¢, € Z/2gZ be
log, (h«), which is well-defined because h,, # 0 and « is a generator in F7 . Since
p € F, is of order 2¢g and ¢, € Z/2gZ, the power t, := p‘~ € F, is well-defined
for k = 1,...,2g9 — 1. In addition, let ¢y be 0. In terms of the multiplicative
character ¢ given by @), t, = ¥(a® —1) for k =0,...,2g9 — 1.

Theorem 5. The (i, j)-entry of W, i.e., log,(u; ;), can be defined, and equal to
p't,. where k = j —i mod 2g. In other words, W = QI where 2 = diag(1,p, ...,
p?9~1) and I' = circ(to, t1,...,tag—1) given by () by using the above t, for
k=0,...,2g — 1.

Proof. Using Fact [[l the Galois invariance of the Weil pairing, and Lemma [I]
we show that for 0 < 1,5 < 2¢g—1,

e(Dis Ds) = el (D), (D7) = el (D7) 9"~ (D)
= 6(D*7pa]—a1(D*)) :e(D*7ptll( ad =t (D*)) 6( pal(a]*t_l)ﬂ_i(D*))
= e(ﬂ'i(D*%TripaJ_lil(D*)) = e(D* al =t 1(D>¢<))

Then for ¢ # j, the above formula is u,; ; = e(D;, D;) = e(D*, p he(D*))P', and
for i = j, it is e(D;, D;) = 1. Thus, log, (u; ;) = 0 = p't, when k= 0. When
k # 0, Lemma [ gives 7‘~p = pl=r* because ¢, = log,(hy). Then ut~ =
e(D*, p"=(D*)), that is, t,, = log, (e(D*, p=(D*))). Therefore, log, (ui ;) = pits
when k # 0. Thus, each row of W = (log,(u;)):; is the multiplication of
that of I = circ(to, t1,...,t29—1) and p’, respectively. Then W = QI by using
2 = diag(1,p,...,p?91). ]
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Corollary 2. Suppose that ged(r,2gw) = 1. Then the base u = e(D*, Dg) # 1
and the Weil pairing matric W of B = {D;} to the base u is regular.

Proof. Assume that e(D*, Dy) = 1. Then all e(D;,D;) =1 (0 <,j <2g—1) by
Theorem Bl However, since B is a basis of Jacc[r] by Theorem [B] this contradicts
the nondegeneracy of the Weil pairing. Thus we proved that e(D*, Dy) # 1.
Moreover, the nondegeneracy of the pairing also shows the regularity of W. O

4.4 An Efficiently Constructible Semi-symplectic Basis

Theorem [0 gives the eigenvalues of I' as Jacobi sums. We use Jacobi sums
J(, ) = Zig:_ll (1 — a®)p*(a®) € F, for i # 0 where the multiplicative
character 1 is given by (@) and a (= p mod w) is a generator of F .

Theorem 6. Suppose that ged(r, 2gw) = 1. Then the eigenvalues of I' are ny =

1 and n; = —J (2, ¥?) wherei=1,...,2g — 1.

Proof. We can diagonalize the circulant matrix I' using the eigenvectors (2)
because r does not divide 2g. The eigenvalues are given by (3). In addition,
since p is a primitive (2g)-th root of unity in F¥, we can use p as 3 in (). Since
te = ¥(a” — 1), we then obtain 7; = 3229, pi" = S22 Lap(as — 1)t (a”) =

k=1

Z/J(—l) Zingll (1 — aﬁ)wi(aﬁ) where ¢ = 0,...,2g — 1. Thus, no = 1 and m =
—J (1, ¥") where i # 0 since )(—1) = —1. 0

All the eigenvalues are nonzero by Corollary B because I" = 27 'W. Let ¥ be
the diagonal matrix diag(no, ... ,nm29—1) = V" 'I'V (See Section ().

Theorem 7. Suppose that ged(r,2gw) = 1. Then the Weil pairing e(ﬁi, 5]) =
w9 #£ 1 if i=2g—1—j, and e(D;, D) = 1 if i#2g—1—j where 0 <i,j < 2g—1.
Proof. Since VT =V, W = QI (Theorem[]), I' = V¥V~ and W is the Weil
pairing matrix of B, the pairing matrix W of B to the base u is

W=VWVT=VWV =VQI'V =VQVIV 'V =VQVP.
The diagonal matrix {2 is equal to V" IV where II is the fundamental per-

mutation matrix circ(0,1,0,...,0). Therefore, W = I[IV?¥ = K¥ where K :=
ITV? is a counterdiagonal matrix of size 2g as given below. Hence, since ¥ =

diag(no, - . . ; M29—1), the Weil pairing matrix W of B is a counterdiagonal matrix
as follows, where n;(# 0) are explicitly given by Theorem [6l
0---1 0 - Mgt
K=2g-|: 1), W=29-|: :
1-.-0 - 0
Since u # 1 from Corollary 2] we obtain the theorem. O
If we normalize l~)i to (297729_1_1-)_1152- where i = 0,...,g9— 1, the counterdiago-

nal entries in W become +1. In other words, each counterdiagonal pairing value
is u or u~'. Thus, we obtained an efficiently constructible semi-symplectic basis
for the Weil pairing since we can calculate 7; exactly (Theorem [{]).
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5 Curves of Artin-Schreier Type

In this section, we investigate curves of Artin-Schreier type in [6], whose embed-
ding degree k = 12. Let m be an integer s.t.m = £1 mod 6 and let ¢ be 2™.
Throughout this section, the ground field is ;. We consider a nonsingular curve
C over Fy,

C:Y?’+Y=X"+X*+b (b=0orl).

5.1 Action of an Extra-Special 2-Group

We define polynomials over Fy as follows:

ET(2) = B6(2)35 (2)B1(2) = (P + 25 + 22+ 22+ 1) (22 + 2+ 1)(2 + 1),
E™(2) =85 (2)B2(2) = (Z* + 22+ 1) (22 + 2 + 1),
E(z)=2E~ (2)E*(2) = 210+ 28 + 22 + 2.

These polynomials F, E~, and ET are Es, E5 , and E;‘ in [8], respectively. For a
root w of the equation E(z) = 0, we define an automorphism o, on C' as follows:

0wt (,y) = (T +w,y+ 22 + 12 + 80) (6)

where 59 = w8 +w?+w, 57 = w?+w?, and s¢ is one of the roots of s2+s = W’ +w3.
Here we note that syp and sg+1 are two roots of the quadratic equation. Then we
can define o, up to +1 multiplication. We can verify the fundamental relations

OwOuw = T0,0, = F0u1w- (7)

In particular, 02 = +1. Hence, G = (40, | E(w) = 0) (C Aut¢) is of order 32
= 25 In fact, G is an extra-special 2-group that is the central product of the
dihedral group of order 8 and the quaternion group of order 8 with identified
center (See [8]). We notice that the roots of E*(z) =0 (and E~(z) = 0) define
the automorphisms of order 4 (and 2), respectively [g].

Let 7 € Fys be atoot of 3(2) = 0. We then set ¢ := 74472 and 6 := 74 +72+7.
Then 32(0) = 0,35 (§) = 0, and € = 6+ 7. Therefore, 0% = —1,02 = —1,02 =1,
and a? = 1. In addition, we fix the (£1)-ambiguity of o¢ such that o = ogo-.
From direct calculations using (@), we obtain the following commutator relations.

0709 = —090r, Or0¢ = —0¢07, 0p0¢ = —0¢0¢, (8)
0107 = —0701, 0109 = —0901, 010¢ = 0¢01.

Here we note that the above relations are satisfied regardless of the (£1)-
ambiguity of o, used above.

Calbraith et al. [6] showed that End’(Jacc) = Q[r, o7, 09] = Q(7) Do, Q(7) ®
o9Q(7) ® 0¢Q(7). Let A and A* be {n?, w0y, w0, wloe | 0 < i, 4, k5,1 < 3} and
{rt, 099, 0.7 et | 0 < d,5,K,1 < 3}, respectively. A distortion map ¢ in
Theorem [ is a Q-linear combination of elements of A because End’(Jaco) =
Q[m, 07, 00]. They state the following result similar to Theorem [21 Let r be an
odd prime s.t.7 | tJacc(F,).
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Theorem 8 ([6]). Assume that the denominators of coefficients of ¢ are co-
prime to r. Then A is a complete set of efficiently computable distortion maps
on Jace|r].

We show that Theorem [§ holds without any unproven assumption when r > 19
in Theorem [T0in Section B4 (See also Corollary [)).

5.2 An Efficiently Constructible Semi-symplectic Basis

Let polynomials PE(T) be T* & hT? + qT? & ghT + ¢*> where h = 2(m+1)/2,
respectively. Then the characteristic polynomial of the g-th power Frobenius
endomorphism 7 is P} (T) or P, (T). Therefore, tJacc(F,) = Pt (1) or P,,(1).
For a prime r s.t.r | tJacc(F,), the embedding degree k (the smallest positive
integer k s.t.¢"* = 1 mod r) is 12, As in Section B3] we choose a nontrivial
D; in Jace(Fg)[r] at first. Then Dy := 09D1, D3 := 0.D1, Dy := 0¢D1. We set
B:={D;|i=1,...,4}, and an F,-vector subspace V := (B) C Jacc[r].

The automorphism o is defined over g, then for Dy, it acts as some scalar
multiplication. In addition, since 02 = —1 and ¢* is a primitive fourth root of
unity, so 01 D1 = £¢>D;. We then fix (£1)-ambiguity of o1 s.t.01 D1 = ¢®D;.

In addition to the fundamental relations (7] and the commutator relations (&),
we use the following commutator relations with the Frobenius endomorphism 7

(1),

TO, = £0,omT, oS = t0 23 = *0,;41 = +0,01,

nogm L = +og2 = *ogy1 = Fogor, 773057r_3 = 0¢.
The last equality is from &% = € and so = € or £ + 1 in (@) of o¢.

Lemma 2. The divisors D1 € Jacc(Fq)[r], Dy € Jacc(Fga)[r], D3 € Jace
(Fg2)[r], and Dy € Jacc(Fys)[r]. In addition, dimg,V > 3 where V = (B).

Proof. By definition, D1 € Jacc(F,)[r]. Since mopn~! = +oyoq, m2oen 2 =
—0g. Then Dy € Jace(Fya)[r] and not defined over a smaller field. Since 130¢ =
oem® and € ¢ Fy, Dy € Jaco(F,2)[r] and it is also not defined over a smaller
field. From 7lc,77% = 40,01, 70,7 % = —o.. Thus D3 € Jacc (Fg2)[r].
Indeed, since Dy, Dy, and Dy are linearly independent over F,, dimp, V > 3. O

Theorem 9. The discrete logarithms of e(D;, D;) to the base e(D1,D3) are
tabulated as

0 010
0 001
-1 000]|"° )
0 —-100

! This is mentioned in [6]. In fact, they have shown that k divides 12 in [6]. For
completeness, we show that k is 12 for any prime r s.t.r | #Jacc(Fq) in Proposition
[ in Appendix.
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Proof. Since 72Dy = — D5 and e is Galois invariant, e(Dy, D)7 = e(Dy, D) L.
From Propositiondlin Appendix, ¢? +1 # 0 mod r. Hence, e¢(D1, D3) = 1. Sim-
ilarly, since w3 Dy = Dy, we see that e(Dy, D4)q3 =e(D1,Dy) and e(D1,Dy4) =1
as well. Using Fact [[l we can verify that e(D;, D;) = 1 except for (i,j) =
(1,3),(3,1),(2,4), (4,2). For example, e(D3, D2) = e(0,D1,09D1) = e(o:D,
0,0¢D1) = e(D1,0¢D1) = e(D1,D4) = 1. Finally, e(D2, D4) = e(D1, D3) since
e(DQ, D4) = e(ang, O’ng) = 6(09D170'90'7—D1) = e(Dl, O'TDl) = e(Dl, Dg). O

Corollary 3. The base (D1, D3) in Theorem[dis not equal to 1: e(Dy, D3) # 1.
Consequently, B is an efficiently constructible semi-symplectic basis of Jacc|r]
for the Weil pairing.

Proof. Assume that e(Dq, D3) = 1. From Theorem [d then e(D, D’) = 1 for all
D and D’ € V. This contradicts the nondegeneracy of the Weil pairing because
dimp,V > 3. We then conclude that e(D1,Ds) # 1, and B is an efficiently
constructible semi-symplectic basis of Jacc[r] for the Weil pairing. |

From Corollary [l we know that the full embedding degree is also 12 (cf. [BIGI12] ).

5.3 Frobenius Action on the Basis B
We determine the action of 7 on the basis B for the completeness of A and A*.

Lemma 3. The Frobenius w acts on B = {D;} as follows: tD1 = Dy, nDy =
ADs, 7D3 = NpuD3 +dD>), and 7Dy = uDy+dDy where A = ¢% or A = —¢* =
¢, pw=q* or p=q® and some d € F,.

Proof. The first formula is trivial. Since mogn~! = +0g01, Tog D1 = o901 D;.
In other words, 7D = £¢>Dy = XDy for A\ = +¢°.

From Lemma [ 7D4 € Jaco(Fy2)[r] = (D1, Dy). Because m°Dy = Dy, we
know that 7Dy = uDy 4+ dD; for p = q* or W= ¢%, and some d € F,.

Since o, = ogog, D3 = mogoeD1 = (wogn ) (moe)Dy = +ogo1(uDs +
dD+) = +o901(ppoe D1+dD1) = togo1(uoe+d)D1. By using o¢o1 = 010¢ in (§),
this becomes og(po¢ +d) - (£01.D1). Here, this + sign and that in the definition
in A above are equal. Therefore, it is og(puoe +d) - (AD1) = AMuor + dog)D1 =
A D3 + dD3) because 0, = ogoe. a

Lemma 4. Ford and i in Lemmal3, d*> = —pu. In particluar, d = ¢° ord = —¢°
when p = q*, d=q or d = —q when p = ¢°.

Proof. From LemmaBl 72Dy = 2Dy + d(u + 1)Dy = p?(Dy — dDy).

When m = 1 mod 6, 7*Dy = ZlZO'ggi D,. Then 7Dy = £0.2D1 and 2D, =
toeaDy = *oeopo1 D1 = :tq305052D1 = :i:q3057rD4. When m = —1 mod 6,
7TiD4 = :‘:0’52% D1. Similarly, 7TD4 = :tJ£4D1 and 7T2D4::|:O'§2D1 ::|:O'§0'£40'1D1
= +q%0¢mDy. In both cases, 2Dy = +q@30erDy = +¢%0¢(uDy + dDy) =
+¢3(uD1 + dDy) because ag =1.

Therefore, because of the linear independence of Dy and Dy, —du? = +¢3u,
p? = +q¢3d. Then d?> = —p, and d = +¢° when p = ¢*, d = +q when p=¢%. O
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5.4 Completeness of A and A*

Let v € F, be )\fl and let l~)4,l~)3 be Dy + vD1, D3 + v D4 respectively. Then
7754 = )\]54 and 7753 = )\Hﬁgx In_addition, let 51 and 52 be Dy and Do,
respectively. Consequently, D1, D2, D3, D4 are eigenvectors of 7 with eigenvalue
1, py A, A respectively. We set B:={D; | i=1,...,4}. The Weil pairing matrix
of the basis B is also given by ([@). Based on the following Lemmas [l and B we
show the completeness of A* and A when r > 19 (Theorem [I0]).

Lemma 5. Ifr > 19, then v is neither 0 nor £1.

Proof. That v # 0 is trivial from Lemma [Bl We notice that all equalities in the

2
following are in [F,.. Since A> = —1 and d? = —u by Lemma @ v? = (/\fl) =

4 = e o 21q, or gql. Assume that v? = 1, then ¢ = 2 or 2¢ = £1. We use
2¢=h%1fg=2,then h=+2and PE(1) =1+£2+2+4+4=13,1.If ¢ = -2,
then h = 42¢°> = 16 and PL(1) = 1£16—2F32+4 = —13,19. If 2¢ = 1, then
h=+1and 4PX(1) = 4+4h+4q+dqh+4¢® = 4£4+2F2+1=9,5.If 2 = —1,
then h = +¢* and 8h = £1. Thus, 16PX(1) = 16 & 16h + 16q & 16¢h + 16¢*> =
16 £2 —8F 144 = 13,11. This contradicts that » > 19. Hence, v? # 1. O

Lemma 6. LetD # O and D’ be inJaccr], and let D’ be expressed as Zle e D;.
If the Weil pairing e(D,oD’) =1 for allo € {1,09,0.,0¢}, then

alch, ch, ¢, ) = () = (c3)” + (c5)* = (c))* = 0. (10)
Proof. Using the relations (§) and 02 = —1, etc., we know that

09(D1) = D2, 09(D2) = D1, 09(D3) = Dy, 09(Dy) = Ds,
0.(D1) = D3, 0:(D2) =—Dy, 0,(D3)=—D1, 0,(Dy)= Do, (11)
Ug(Dl) = 1)47 O’g(DQ) = —Dg, O’g(Dg) = —DQ, O’g(D4) = Dl.

Let D be > ¢;D;. Then e(D,D’) = 1 implies that cicf — c3c) + cacy —
cychy = 0 from (@) and Corollary Bl Using (), we obtain similar relations from
e(D,oD’') =1 for all ¢’s. That is,

sy = —dh

! / ! /
€y C3 Cp C
—cy —ch —ch —cj
—cy =y ¢y

(61 620364) 2(0000) (12)

Because D # O, the determinant of the matrix in the LHS of ([I2) is 0. It is
—a(cy, ¢y, ch, cy)? where a is defined in ([[0). Therefore, a(c},ch,ch,cy) =0. O

Theorem 10. Both A* = {7, 09n’, 0. 7", 0¢r! | 0 < i,j,k,0 < 3} and A =
{rt, oy, mro.,wloe | 0 < i,j,k,1 < 3} are complete sets of efficiently com-
putable distortion maps on Jacc([r] with r > 19.

Corollary 4. We can choose ¢ in Theorem [§ whose denominator is 1 when
r > 19.
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Proof of Theorem 10. We show that Jacc[r] = (§(D') | 6 € A*) as an F,-vector
space for every nontrivial D’ € Jacc[r]. First, we express D’ in terms of the
basis B ie.,D" =3¢ D; where some ¢; # 0. Using relations of D; and D],

Wi(D/) = 5151 + /LiEQEQ + ()\u)zggﬁg + )\i5454
= (51 + AiV54)D1 + (uigz + (Au)iyg3)D2 + (Au)igng + AiE4D4.

To prove that Jacc[r] = (6(D') | 6 € A*) by reductio ad absurdum, first, we
assume that e(D,on’D’) = 1 for the Weil pairing e, all 0 € {1,09,0,,0¢}, and
some D # O. We then apply Lemmaflto D and 7¢(D’). After some calculation,
we obtain

PP — PN (V2 = 1) BN (V2 1)+ 20 e ey — 2% N vy cz =0 (13)

for all integers i. For i = 0,...,5, we consider (I3 with ¢2,...,¢2,¢1C4, CaCs
as 6 indeterminates. Since v # 0,41 from Lemma [l the coefficient matrix of
(@) is the product of the regular diagonal matrix diag(1,—1, —(v? — 1),v? —
1,2v, —2v) and the Vandermonde matrix V = V(1, u2, u2\2, A2, A, A\p?). Since
w? e {q* * 1N € {3 "1 N = 802 € {, 4"}, and M € {q.¢°, ", '},
the determinant of V' is not zero, all ¢; are zero, and D' = O. It contradicts.
Hence, e(D,8D") # 1 for some § € A*. This concludes the completeness of A*.

For the completeness of A, first, we see that e(6D,D’) = e(on'D,D’) =
e(D,mioD')*9 for § = o’ € A* where j = 12 — i. Hence, the completeness of
A* implies that of A. O

6 Conclusion

We have proved that a specific set of efficiently computable endomorphisms
definitely gives a distortion map for every pair of nontrivial divisors on the curves
in [6]. In addition, we treated the general version of the curve here. Moreover,
we obtained efficiently constructible semi-symplectic bases for these curves using
cyclotomy (Gauss sum, Jacobi sum, etc.) and group-theoretic consideration. The
bases will provide a basic tool for a possible new cryptographic application of
pairing on a higher dimensional vector space suggested in [413].

Acknowledgments. I would like to thank Tatsuaki Okamoto, Takakazu Satoh,
Toyohiro Tsurumaru, Shigenori Uchiyama, and the anonymous reviewers of
ANTS VIII for their helpful comments. All computer calculations in support
of this work were performed using Magma [I].

References
1. Cannon, J.J., Bosma, W. (eds.): Handbook of Magma Functions, 2.13nd edn.,

pages 4350 (2006)
2. Davis, P.J.: Circulant Matrices, 2nd edn. Chelsea publishing (1994)



Efficiently Computable Distortion Maps 101

3. Freeman, D.: Constructing pairing-friendly genus 2 curves with ordinary Jacobians.
In: Takagi, T., Okamoto, T., Okamoto, E., Okamoto, T. (eds.) Pairing 2007. LNCS,
vol. 4575, pp. 152-176. Springer, Heidelberg (2007)

4. Galbraith, S.D., Hess, F., Vercauteren, F.: Hyperelliptic pairings. In: Takagi, T.,
Okamoto, T., Okamoto, E., Okamoto, T. (eds.) Pairing 2007. LNCS, vol. 4575, pp.
108-131. Springer, Heidelberg (2007)

5. Galbraith, S.D., Pujolas, J.: Distortion maps for genus two curves. In: Proceedings
of a Workshop on Mathematical Problems and Techniques in Cryptology, CRM
Barcelona, pp. 46-58 (2005)

6. Galbraith, S.D., Pujolas, J., Ritzenthaler, C., Smith, B.: Distortion maps for genus
two curves (2006), http://arXiv.org/abs/math/0611471

7. Galbraith, S.D., Rotger, V.: Easy decision Diffie-Hellman groups. LMS J. Comput.
Math. 7, 201-218 (2004)

8. van der Geer, G., van der Vlugt, M.: Reed-Muller codes and supersingular curves
1. Compositio Math. 84, 333-367 (1992)

9. Lidl, R., Niederreiter, H.: Finite Fields, 2nd edn. Cambridge University Press,
Cambridge (1997)

10. Milne, J.S.: Abelian varieties. In: Cornell, G., Silverman, J.H. (eds.) Arithmetic
Geometry, Springer, Heidelberg (1986)

11. Mumford, D.: Abelian Varieties. Oxford University Press, Oxford (1974)

12. Stichtenoth, H., Xing, C.: On the structure of the divisor class group of a class of
curves over finite fields. Arch. Math. 65, 141-150 (1995)

13. Verheul, E.: Evidence that XTR is more secure than supersingular elliptic curve
cryptosystems (full version of the proceeding in Eurocrypt 2001). J. Crypt. 17,
277-296 (2004)

Appendix

Proposition 1. The embedding degree k is 12 for every primer s.t.r | tJacc(Fy)
for the curve in Section[d.

Proof. In [6], they show that k divides 12. Hence, we must show that r does not
divide @;(q) for any divisor ¢ of 12 s.t.i # 12 where @; is the i-th cyclotomic
polynomial. In the following discussion, all equalities mean that in F,..

If $1(q) =0 (i.e., ¢ = 1), then PE(1) = 3+ 2h = 0. h? = 2 since 2q = h>.
Thus 3h £4 = 0. This leads to 1 = 0, a contradiction. If $3(¢) = 0 (i.e.,
q = —1), then PE(1) = 1 = 0. Another contradiction. If ®#3(q) = 0, then
PE(1) = £h(q+1) =0. ¢+ 1 = P3(q) = 0 since h is a power of 2. Contradiction.

If ®4(q) = ¢*> +1 =0, then PE(1) = £¢h 4+ g+ h = 0. Then using 2¢ = h?,
we obtain +h% + h + 2 = 0. We solve the simultaneous equations h* + 4 =
4(¢®> +1) = 0 and £h? + h £2 = 0. In the case of the plus sign, the remainder
of division of the 2 polynomials is A + 2(= 0), and this leads to » = 2. That
contradicts ¢> +1 = 0 mod r. In the case of the minus sign, the above remainder
is —3h + 6(= 0). It leads to h = 2 and r = 2 (contradiction as above) or r = 3.
If »r = 3, then ¢ + 1 = 2 = 0 since ¢ is a power of 2. Again, a contradiction.

If d6(q) = ¢> —q+1 =0, then £h? 4+ 2h 4+ 2 = 0 since PE(1) = 0. We solve
the simultaneous equations h* — 2h% +4 = 0 and £h? + 2h & 2 = 0. Both cases
of the + sign lead to contradictions as above. We have completed the proof. 0O
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Abstract. We further analyze the solutions to the Diophantine equa-
tions from which prime-order elliptic curves of embedding degrees k =
3,4 0or 6 (MNT curves) may be obtained. We give an explicit algorithm to
generate such curves. We derive a heuristic lower bound for the number
E(z) of MNT curves with & = 6 and discriminant D < z, and compare
this lower bound with experimental data.
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1 Introduction

For an elliptic curve E defined over a finite field IFy, let #E(IF,;) = n = hr be the
number of IF ;-rational points on F, where r is the largest prime divisor of n, and
ged(r, g) = 1. The set of all points of order r in E(IF,) forms a subgroup of E(IF,)
denoted by E[r]. For such an integer 7, a bilinear map can be defined from a pair

of r-torsion points of £ to the group p,- of rth roots of unity in IF, by
er: Elr] x E[r] — .

In fact, the multiplicative group g, in the above mapping lies in the extension
field Tgx where k is the least positive integer satisfying k > 2 and ¢ =1
(mod r). The above mapping is called the Weil pairing, and the integer k is
called the embedding degree of E.

Pairings such as the Weil pairing (other proposed pairings include the Tate
pairing, the Eta pairing [2], or the Ate pairing [7]) are used in many crypto-
graphic applications such as identity based encryption [4], one-round 3-party
key agreement protocols [§], and short signature schemes [21]. The computation
of pairings requires arithmetic in the finite field IF,x. Therefore, k should be
small for the efficiency of the application. On the other hand, the discrete loga-
rithm problem (DLP) in the order-r subgroup of E(IF,) can be reduced to the
DLP in IF » [I3]. Therefore, k must also be sufficiently large so that the DLP in
IF» is computationally hard enough for the desired security. In particular, it is
reasonable to ask for parameters ¢, and k so that the DLP in E(IF,), and the

A.J. van der Poorten and A. Stein (Eds.): ANTS-VIII 2008, LNCS 5011, pp. 102 2008.
© Springer-Verlag Berlin Heidelberg 2008
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DLP in IF+ have approximately the same difficulty. Given the best algorithms
known and today’s computer technology to attack discrete logarithms in elliptic
curve groups and in finite field groups, the 80-bit security level can be satisfied
by choosing r ~ 2160 and ¢* ~ 21924, If E/IF, is of prime order, then r ~ ¢, and
thus the 80-bit security level can be achieved if ¢ ~ 217 and k = 6.

Now, Miyaji, Nakabayashi, and Takano [I4] gave a characterization of prime-
order elliptic curves with embedding degree k = 3,4 and 6, in terms of necessary
and sufficient conditions on the pair (g,t) where t = g + 1 — #E(IF,), the trace
of E over IF,. Such elliptic curves, if ordinary (i.e., when ged(q,t) = 1), are
nowadays commonly called MNT curves.

The only known method to construct MNT curves is to compute suitable
integers ¢ and ¢ such that there exists an ordinary elliptic curve E/IF, of prime
order and embedding degree k, and to then use the Complex Multiplication
method (or CM method) [I] to find the equation of the curve E over IF,. In fact,
all methods known so far to construct ordinary elliptic curves of any order and
small embedding degree use the CM method; see [5] for a comprehensive survey.
A central equation in this context is the CM equation

4q —t? = DY? (1)

where D is a positive integer and Y € ZZ. If D is square-free, we call D the
Complex Multiplication discriminant (or CM discriminant, or briefly discrimi-
nant) of E. Given current algorithms and computing power, the CM method is
practical if D < 100 (see [5] for a discussion of this bound).

From (Il) Miyaji, Nakabayashi, and Takano [I4] derived Pell-type equations,
which we subsequently call MNT equations (see Section B]). For a fixed em-
bedding degree k € {3,4,6} and CM discriminant D, solving the corresponding
MNT equation leads to candidate parameters (g, t) for prime-order elliptic curves
E/TF, of trace t = g+1—#E(IF,), embedding degree k and discriminant D. As,
by nature of generalized Pell equations, the solutions of an MNT equation (if
sorted by bitsize and enumerated) grow exponentially, MNT curves are very rare.
In fact, Luca and Shparlinski [I1] gave a heuristic argument that for any upper
bound z, there exists only a finite number of MNT curves with discriminant
D < z, regardless of the field size. On the other hand, specific sample curves of
cryptographic interest have been found, such as MNT curves of 160-bit, 192-bit,
or 256-bit prime order ([I7120]).

Contribution of This Paper. First, we further analyze the solutions of the
MNT equations and establish that the MNT curves of embedding degree 6 are
given through the solutions in one of the two (if any) solution classes of the MNT
equation (Section [3). Based on this analysis we give a complete algorithm (in
the appendix) to calculate such solutions that lead to potentially prime-order
elliptic curves; we could not find such an explicit algorithm anywhere in the
literature. We also point out a one-to-one correspondence between MNT curves
of embedding degree 4 and MNT curves of embedding degree 6 (Proposition [IJ).

Second, building on the work by Luca and Shparlinski [T1] who gave a heuristic
upper bound on the expected number E(z) of MNT curves with embedding
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degree 6 and bounded discriminant D < z, we provide a heuristic lower bound
for E(z) (Section {2). Specifically, we show that for large enough z we have

E(z) > 0.49 (lo‘g/'z )2 which nicely complements the Luca-Shparlinski result that

E(z) < z/(logz)? and corrects the guess [IT, p. 559] that E(z) < 2°(1). Here
and throughout, log z denotes the natural logarithm of z.

Finally, we give numerical data on E(z) over finite fields of bounded char-
acteristic, and compare those data with our new lower bound (Section F3]). At
least for this experimentally verifyable range, our lower bound, once corrected
by a constant factor, seems to quite well capture the number of MNT curves of
discriminant D < z.

2 MNT Curves and Their Pell Equations

The Miyaji-Nakabayashi-Takano characterization [T4] of MNT curves is summa-
rized in the following theorem.

Theorem 1. Let E/IF, be an ordinary elliptic curve defined over a finite field
IFy. Let n = #E(IF,) be a prime and k the embedding degree of E.

1. Suppose q¢ > 64. Then k = 3 if and only if ¢ = 121> — 1 and t = —1 £ 61 for
some l € Z.

2. Suppose q > 36. Then k =4 if and only if g =1> +1+1 andt = —1,1+ 1
for somel € ZZ.

3. Suppose q > 64. Then k = 6 if and only if ¢ = 41> + 1 and t = 1 + 2l for
some l € Z.

Note that for each elliptic curve characterized by Theorem [Il we have exactly
two representations. For example (k = 4), if t = —[ and ¢ = [ + [ + 1 for some
integer [, we can also write I’ = — — 1 and t =1’ +1 and ¢ = I'”> + 1’ + 1. (See
also Proposition Bl)

The characterization from Theorem [ implies a one-to-one correspondence
between MNT curves with embedding degree & = 4 and MNT curves with
embedding degree k = 6.

Proposition 1. Let n > 64 and g > 64 be primes. Then n and q represent an
elliptic curve Eg/IF; with embedding degree k = 6 and #Es(IF,) = n if and only
if n and q represent an elliptic curve Ey/IF, with embedding degree k = 4 and
#E4(F) = q.

Proof. Let n > 64 and ¢ > 64 represent an elliptic curve Eg/IF, with k = 6 and
#E6(IF,) =n = q+ 1 —t. By Hasse’s theorem we have > < 4¢. Now,

t? <4qet? <4t —14n)
& (t—2)? < 4n. 2)

Let ' =¢, ¢ =n,and t' =¢ +1—n'. Then ¢/ = 2 —t, and by [@)), ¢’ satisfies
the Hasse bound with ¢' = n. So let E4 be an elliptic curve over IF, with n’
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points. Now, by Theorem M) ¢ = 4{? + 1 for some integer [. If t = 1 — 2I, then
¢ =q+1—t=(20)?+2l+1and ¢ = 2l + 1, and thus by @) of Theorem
[ E,/IFy has embedding degree k' = 4. Replacing by —I in the last sentence
settles the other case, t = 1 + 2I.

To prove the converse, let n,q be primes greater than 64 representing an
elliptic curve E4/IF, with embedding degree k = 4 and n points, and let t =
q¢+1—n. Then by Theorem[Il[Z) ¢t =1+ 1 or t = —I for some | € ZZ. Since both
n,q are odd primes, t must be odd. Thus, [ is even if t = [ + 1, and [ is odd if
t = —I. In the first case, [ = 2m and t = 1+ 2m for some integer m, while in the
second case, we can write [ = 2(—m) — 1 and ¢t = 1 + 2m for some m € ZZ. We
now proceed just as in the first part (starting after (2))).

Now, let us parametrize MNT curves by (q(1),t(1)) where ¢(I) and ¢(1) are as in
Theorem [l Then, after some elementary manipulation of the corresponding CM
equations 4¢(l) — t(1)?> = DY2, one can obtain generalized Pell equations which
we call the MNT equations. In particular:

1. The MNT equation for k = 3 is X2 — 3DY? = 24, where t(I) = 6/ — 1 and
X =6l+3,ort(l)=—-6l—1and X =6]—3.

2. The MNT equation for k = 4 is X2 — 3DY? = —8, where t(I) = —[ and
X=3l+2,ort(l)=014+1and X =3[+ 1.

3. The MNT equation for k = 6 is X? — 3DY? = —8. where ¢(I) = 2] + 1 and
X=6l—1,ort(l)=—-2l+1and X =61+ 1.

The MNT method then consists of the following: Fix k. Choose D < 10'°.
Solve the MNT equation to (hopefully) find pairs (g, ¢) such that ¢ is a prime
power and of the desired bitlength, and g + 1 — ¢ is prime. Finally, use the CM
method to construct the actual curve.

3 Solving the MNT Equations

For solving the MNT equations, we need some facts from the theory of Pell
equations and continued fractions. We refer to Mollin’s book [I5] for more details.

Let m € ZZ, D € IN and D not a perfect square. Then a generalized Pell
equation can be given as follows

X? - DY? =m. (3)

If € Z,y € Z and x> — Dy? = m then we use both (z,%) and = + yv/D to
refer to a solution of (), since z+y+/D is an element in the quadratic field Q(v/D)
with norm 22 — Dy? = m. Let a = x 4+ yv/D be a solution to (). If ged(z, y)=1
then « is called a primitive solution. Two primitive solutions oy = x1 + 1V D
and oy = x5 + y2v/D belong to the same class of solutions if there is a solution
B =u+vVDof X2~ DY? = 1such that o, = faa. Now, if & = z+yv/D then let
o' denote the conjugate of a, that is, o = z —y+/D. If a primitive solution and its
conjugate are in the same class then the class is called ambiguous. If & = x+yv/D
is a solution of (@) for which y is the least positive value in its class then a is called
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the fundamental solution in its class. Note that if the class is not ambiguous then
the fundamental solution is determined uniquely. If the class is ambiguous then
adding the condition = > 0 defines the fundamental solution uniquely. Finally, if
a = z + yV/D is a solution of @) for which y is the least positive value and x is
nonnegative in its class then « is called the minimal solution in its class, and it is
determined uniquely. If (z, y) is a minimal solution to X? — DY? = m, and (u, v)
is a minimal solution to U? — DV?2 = 1 then all primitive solutions (z;,y;) in the
class of (z,y) are generated as follows:

z; +y;V'D = +(z + yV'D)(u + vV D), where j € Z. (4)

Now we show that some Pell-type equations cannot have elements from an
ambiguous class as solutions. We will use this result in Section 3.1l

Lemma 1. Letm € Z, m =0 (mod 4), and let D be an odd positive integer,
not o perfect square. Then, the set of solutions to X2 — DY? = m does not
contain any ambiguous class.

Proof. Suppose that there is an ambiguous class of solutions. Then there exists
a primitive solution & = & + yv/D such that o and o = = — yv/D are in the
same class. Then (22 +y2D)/m is an integer ([I5, Proposition 6.2.1]), and thus
also 2y?>D/m € Z. But this cannot be true as y is odd, and so is D, while 4|m.

If @ = (x,y) is any solution in a given solution class of X2 — DY? = m then
it is known ([I6], Theorem 4.2) that there exists an integer Py which satisfies
—|m|/2 < Py <|m|/2 and

Py +VD = (z +yVD)(s +tVD) (5)

for some unique element s+ tv/D. In this case a = (z,y) is said to belong to the
element Pp.

Remark 1. If a belongs to Py and the class containing « is not ambigious, then
/

o' = (z,—y) belongs to —Fy. This can be seen by conjugating (&) and then
multiplying it by —1, which gives —Py + v'D = (z — yv/D)(—s + tv/D).

3.1 Embedding Degree k = 6

In this section we analyze the MNT equation for the case k = 6: X2 —3DY? =
—8. We let D’ = 3D and for future reference rewrite the equation as

X2 -DYy?=-8. (6)
We will show that for finding all computable MNT curves with k& = 6 the fol-
lowing applies:

1. D’ should be fixed such that 0 < D’ < 3-10'° and D’/3 is squarefree. — This
is required for the CM method.
2. D'’=9 (mod 24) and —2 is a square modulo D’ (Proposition [2]).
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3. If there is a solution to X2 — D’Y? = —8 then it is enough to find, if it exists,
only one minimal solution, say (zo,yo) (Theorem [ Proposition []).

4. Let (u,v) beaminimal solution to U?—D'V2=1and (z;,y;) = £(z0,y0)(u,v)’
the set of all solutions in the same class as (z, y). Then it is enough to consider
only one of the solutions (z;,y;) and —(z;,y;) (Proposition[3]).

Proposition 2. Assume E/IF, (¢ > 64) is an MNT curve with embedding de-
gree k =6 and CM discriminant D that is constructible with the MNT method.
Let D' = 3D. Then (@) must have only primitive solutions. Further, D' = 9
(mod 24), and —2 must be a square modulo D’.

Proof. If there exists E/IF, with k = 6 then by Theorem [[[3)) there exists some
integer [ satisfying 4g—t? = 12(?441+3. As the CM equation () needs to hold, this
implies 4/(31+£1)+3 = DY? andso DY? =3 (mod 8). Hence, D =3 (mod 8),
and D’ =9 (mod 24). Now, let (z,y) be a solution of (@) with ged(z,y) =d > 1
and let # = da’, y = dy’. Since d?(2’> — D'y’?) = —8 and D’ is odd, we must
have d = 2. Then 22 — D'y/? = —2 and thus 2/ — 4> = 6 (mod 8). But this
congruence has no integer solutions, and so any solution of (@) must be primitive.
Finally, reducing (@) modulo D’ proves that —2 must be a square modulo D’.

By Proposition 2] the MNT curves with & = 6 can only be obtained through the
primitive solutions of the equation

X?-D'Y?=-8, where D'’=9 (mod 24). (7)

Remark 2. If (x,y) is a primitive solution to (), then x and y must both be
odd. (This is directly implied by the facts that ged(x,y) = 1 and D’ is odd.)

Remark 3. For any solution (x,y) of (@) with x odd we must have x = +1
(mod 6). (Reducing (@) modulo 3 yields z2 =1 (mod 3).)

Theorem 2. Equation (7)) either does not have any solution or it has exactly
two classes of solutions. In particular, if « is a solution of (7)) then o and its
congugate o' represent the two solution classes.

Proof. If ([@) does not have any solution then we are done. Therefore, we shall
assume that « is a solution belonging to some class, say Py. Then, by Lemma [T]
and Remark[Il o’ is a solution belonging to — Py. If these are the only two solution
classes then we are done. So assume that there are more than two solution classes.
Now, by the choice of Py we have P§ — D’ =0 (mod 8), and —4 < Py < 4.
Thus, since D’ =1 (mod 8), the only possible values for Py which represent
the different classes of solutions are Py = +1,43. So let o, o/, 3, 3 correspond
to the Py values 1, —1, 3, —3, respectively.

Since « is a solution belonging to class Py = 1 we can write for some integers
S1, tl that

1+ VD' = afs) + VDY), (8)
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and thus by conjugation (see Remark [I))
1—VD' =d/(s; —t, VD). 9)

Now, let D’ =1 (mod 8) and let o = x4 y+/D’. Consider the quadratic field
Q(v/D'), and its ring of integers R. The prime ideal generated by 2 factors in R
as

on— 2, TP Y (10)

(2, Theorem 25]). Note that «/2 and «o'/2 are both algebraic integers in
Q(v/D’) since, by Remark Bl = and y have the same parity. Also the princi-
pal ideals generated by «/2 and o'/2 are prime ideals since both have norm

2 in Q(vD'). Therefore, @) and @) give the inclusion (2, "¥YP") C (%) and

(2, 1"2/D "y C <”§/ ), respectively. In fact, we even have equality in both inclusions
since all four ideals are nonzero prime ideals, that is, (§) = (2, 1+‘2/D ") and

, 2
(%)= (2,17yP").

Applying a similar reasoning to 8 and 3 yields

o4 1+ VD' «
=P =) ()

and y )
=TI = (12)

It follows from (1) that

53+ t3V/ D’

1+ VD =g/ 5 )

(13)
for some integers s3, t3 of the same parity. In fact, s3 and t3 must be odd since
a and (' belong to different solution classes. Similarly, it follows from (I2)) that

Sq + t4\/D’

3+\/D’:o/( 5

) (14)
for some odd integers s4 and t4. Now write D’ = 8n + 1 for some integer n. If
n is odd, then we multiply (I3 with its conjugate to obtain s — t2D’ = 4n. So
s3—t2=4 (mod 8), which does not have any solution for odd values of (s3, t3).
If n is even, then multiplying ([d)) with its conjugate gives s? — 2D’ = 4(n — 1),
that is, s7 —t3 =4 (mod 8) which does not have any solution for odd values
of (s4,t4). Consequently, the assumption that there are more than two solution
classes was wrong. This completes the proof.

Proposition 3. Assume (1) has a solution, and let S and S’ denote the two
solution classes. Let € and &' denote the sets of elliptic curves of embedding
degree 6 that correspond to the solutions in S and S’, respectively, using the
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correspondence from Section [&: if (x,y) € S (or S") and x =1 (mod 6), let
I = (z—1)/6 and E, be the elliptic curve over IF, with trace t where ¢ = 4% + 1
andt = 1421, while if (x,y) € S (orS') andx = -1 (mod 6), let]l = (x+1)/6
and E, be the elliptic curve over ¥, with trace t where ¢ = 41> +1 and t = 1—21.
Then & = ¢&'.

Proof. Let E/IF, € £ with trace t, and #E(IF;) = n. Then there exists a pair
(z,y) € S such that x = £1 (mod 6). Suppose first that x = 1 (mod 6),
and [ = (x —1)/6. Then ¢ = 412 +1,t =1 — 2] and n = 41> + 2] + 1. Now
let (2/,y") = (—x,y). Since the set of solutions to (7)) does not contain any
ambiguous class (Lemma [Il), we have (2/,y’) € S’. Further, 2’ = -1 (mod 6).
Now let I' = (2/ +1)/6, and ¢/ = 4l"? + 1, ¢/ =1+ 2", n/ = 4> + 2I' + 1. Let
E!, € &' be the corresponding elliptic curve over IF} with trace ¢ and n' points.
Since I’ = —[ and thus ¢ = ¢, t' = t and n’ = n, we have (up to isogenies)
E. = E. The analogous reasoning applies for the case x = —¢ (mod 6). Thus,
£ C &'. The converse follows with the same argument.

Summing up, we showed that MNT curves with k£ = 6 are completely charac-
terized through certain primitive solutions of the corresponding MNT equation,
X? —3DY? = —8. Moreover, we showed that this MNT equation either has
no primitive solutions or has exactly two solution classes. In the latter case, we
proved that the two solution classes lead to the same set of elliptic curves and so
it is enough to consider only one of the two solution classes. Also, we gave some
necessary conditions on D for the existence of solutions to the MNT equation.

3.2 Embedding Degree k = 4

The case of MNT curves with embedding degree k& = 4 is completely covered
by combining the above analysis for the £ = 6 case with the explicit one-to-
one correspondence of Proposition [[l between the MNT curves with embedding
degree k = 6 and those with k£ = 4.

3.3 Embedding Degree k = 3

The analysis of this case is similar to the case k = 6. First, we let D’ = 3D and
rewrite the CM equation for k = 3 as

X?-D'Y? =2
Below, we summarize the results from our analysis [9].

1. D’ should be fixed such that 0 < D’ < 3-101° and D’/3 is squarefree.

2. D' =57 (mod 72) and 6 is a square modulo D’.

3. If there is a solution to X2 — D'Y? = 24 then it is enough to find, if it exists,
only one minimal solution, say (zo, yo).

4. Let (u,v) beaminimal solution to U?—D'V?=1.Let (x;, y;) = £(z0, Yo ) (u, v)’
be the set of all solutions in the same class as (z, y). It is enough to consider only
one of the solutions (x;,y;) and —(z;, y;).
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4 Frequency of MNT Curves

In this section we give estimates for the number of (isogeny classes of) MNT
curves of bounded CM discriminant. In our discussion, we focus on the case
k = 6. Following Luca and Shparlinski [I1], we define E(z) to be the expected
total number of all isogeny classes of MNT curves (over all finite fields) with
embedding degree 6 and CM discriminant D < z. Luca and Shparlinski [I1]
gave heuristic upper bounds on E(z) which we recall in Section [L], while in
Section 22l we will give a (new) heuristic lower bound.

4.1 The Luca-Shparlinski Upper Bounds

Recall from Sections 2l and BIl that in order to find MNT curve parameters with
k = 6 (for a particular D), one needs to first find a minimal solution (x,y) of
[@ as well as the minimal solution, say (u,v), of U? — 3DV? = 1. Then the
solutions (xj,y;) (j € Z) in the same class as (z,y) would lead to an integer
lj = (x; £ 1)/6 (see Remarks B and B). Finally, one checks if ¢; := 413 + 1 and
n; = ¢; F 2l; (cf. Theorem [[([3)) satisfy the primality conditions.

Luca and Shparlinski [II] define, for a fixed discrininant D, N(D) as the
expected total number of j € ZZ for which ¢; is a prime power and n; is a prime.

Then
E(z)= Y. N(D).
D<z
D squarefree

Under the assumption that the primality properties of ¢; and n; are ruled by
the prime number theorem (meaning that ¢; and n; are prime with proba-
bilities 1/logq; and 1/logn;, respectively), Luca and Shparlinski show that
N(D) < 1/(log D)2. They conclude that F(z) < z/(log z)?. Further, Luca and
Shparlinski suggest a stronger upper bound for F(z) which relies on the conjec-
ture (see [10, p.185]) that there exists a set D of nonsquare positive integers that
has asymptotic density 1 and such that limpep loglog(u + vv/3D)/log VD = 1.
Using this conjecture, Luca and Shparlinski argue that N(D) < 1/(D**°M) for
D € D, and suggest that F(z) < 2°(1). We will see below (Theorem [3)) that this
does not hold.

4.2 A Lower Bound

In this section we give a lower bound for E(z). For this we are going to restrict
ourselves to solutions of the MNT equation X2 — 3DY? = —8 with ¥ = 1.

Theorem 3. Assume that the primality properties of 412 + 1 and 41% £ 21 + 1,
where | € IN and such that (6] = 1)% = 3D — 8 for some odd squarefree integer
D, are captured by the prime number theorem. Then there exists an integer zg
such that

E(2) > 0.49 (1022)2 (15)

for every z > zy.
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Proof. Let F(z) denote the set of odd and squarefree integers D € [3, z] such
that 3D — 8 is a perfect square, and let F(z) = #F(z). For D € F(z), let
zp(> 0) such that z2, = 3D — 8, and let [p € IN such that xp = 6lp + 1 or
xp = 6lp — 1. Denote qp = 412D+1, and np = 4l%+2lp+1 ifxp =6lp+1or
np = 4l% — 2lp + 1 otherwise.

An easy calculation shows that if D < z, then ¢p < z/2 and np < 3z/4. As
we assume that the primality properties of both ¢p and np are captured by the
prime number theorem, and since for z > 17, the number 7(2) of primes < z
satisfies 7(z) > z/log z, we have

Prob(qp and np prime | gp = 41°> + 1,np = 41> £ 2] + 1, where
[>1and (6] £1)? = 3D — 8 for some squarefree D < z)

1 1 1
> log(2/2) " log(3z/4) = (log2)?

Now, by Section 2 the number G(z) of pairs (¢p,np) (D € F(z)) where both
gp and np are prime constitutes a lower bound for E(z). Thus,

1
(log 2)?’

To find a lower bound for F(z), first note that 3D — 8 is a perfect square and D
is odd and squarefree, if and only if D = 1212 4 4] + 3 is squarefree (by putting
3D —8=(6041)%). Let f(I) =121+ 4l + 3, and F,(2) = {D € [5,2] : D =
f+(1) squarefree}. As f,(I) is irreducible over ZZ[l], there are ~ cy, L positive
integers [ < L such that f,(I) is squarefree, where ¢y, is a positive constant
(I8, Theorem A], [6, Theorem 1]). Now, 5 < D = f,(I) < z if and only if

1<1< \/f2 — 2— & =: L. Thus, for each ¢ > 0 there exists an integer Z, such

E(z) > G(2)

> F(z)- (16)

9
that (cy, —e)Ly < #F(2) < (cg. +€)Ly for all z > Z . Doing the analogous
with f_(l) :== 121> — 4l + 3, and F_(z) := {D € [5,2] : D = f_(l) squarefree}

and L_ := \/ 5 — o+ ¢ we find that there exists a positive constant c¢;_ such

that for each e > 0 there exists an integer Z_ such that (c¢y. —e)L_ < #F_(2) <
(cy_ +e)L_ for all z > Z_. Thus, since F(z) = F1(z) UF_(z) U{3} (disjoint),
we obtain

F(z) > (¢, +cp. — 2e)\/z/12 (17)

for all z > 2 1= max{Z;,Z_}. Now, ¢y, =[], prime (1 —wyg, (p)/p*) where
wy, (p) denotes the number of integers a € [1, p?] for which fi(a) =0 (mod p?)
([18I6]), and the same holds for ¢;_ with f replaced by f_ throughout. It can be
readily seen that wy, (3) = wy_(3) = 1 and wy, (p),wy_(p) € {0,2} otherwise.
Further, the polynomial az? + bz + ¢ has two solutions modulo p? if and only if
a is invertible modulo p? and b? — 4ac is a square modulo p?. Thus, fi(I) =0
(mod p?) (p > 3) has two solutions modulo p? if and only if —128 is a quadratic

residue modulo p2. This is the case if and only if (—p?) — 1, which holds if and

onlyifp=1 (mod 8)orp=3 (mod 8). The same reasoning applies to f_(I).
Consequently,
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cr, =cp = g . H (1 —2/p2).

p prime, p=1,3 (mod 8)

Now,

11 (1—2/p*) > 0.858146,
p prime, p<10000, p=1,3 (mod 8)

while the tail can be bounded below by

9999 - 10000
—9/2) > A2y . .
I =2z T (=475 = 001 10002 > 0999

p prime,p>10000 s>10000

Hence, ¢y, > 0.858146-0.9996 > 0.8578. Combined with (7)), using ¢ = 0.0008,

this yields F(z) > 0.857,/z/3 for all z > ;. Used along with (IG)), this completes
the proof.

Remark 4. The above lower bound on E(z) can be increased by a constant
factor if also solutions to the MNT equation X2 — 3DY? = —8 with ¥ > 1
are considered. In fact, for each odd Y such that X2 = 3Y? — 8 (mod 6Y?)
is solvable, a lower bound for the number Fy (z) of odd and squarefree integers
D € [3,2] such that 3Y2D — 8 is a perfect square, can be derived in exactly
the same way as for Y = 1. The corresponding polynomials fy 1 (1) are given as
fy+() = 12Y21? £ 4sl + (s +8)/(3Y?), where s> =3Y? -8 (mod 6Y?). They
all have (polynomial) discriminant —128, and thus the corresponding cy-values
will differ only by those factors that involve primes p|Y. In particular, including
the cases Y = 3,9 will raise our lower bound by a factor of (1+1/3 +1/9).

4.3 Experimental Results on E(z)

Using the computational algebra system MAGMA [3] we implemented an al-
gorithm to calculate, for given bitsize N and upper discriminant bound z, all
(isogeny classes of) MNT elliptic curves of embedding degree 6 and discriminant
D < z over a finite field ¢ where ¢ — 1 is an N-bit prime.

As discussed in Section Bl only those squarefree D such that for D' = 3D we
have D' =9 (mod 24) and (57) = 1 need to be considered.

For any such D < z, our algorithm (Algorithm [3 of the appendix) first calls a
Pell equation solver to compute minimal solutions (z,y) and (u,v) to (@) and to
the equation u? — 3Dv? = 1, respectively. This Pell equation solver is Algorithm
[ (of the appendix) if 3D > 64 and Algorithm 2] (of the appendix) if 3D < 64;
both algorithms are taken from Robertson [I9]. The minimal solutions (x,y) and
(u,v) are used to compute, one by one, all primitive solutions to ([@l). For each
such primitive solution, it is checked if it yields values for ¢ and n such that ¢ is
a prime power and of the desired bitsize, and n is prime.

Using Algorithm [3 we first conducted a series of experiments to check the
quality of our lower bound on E(z) (Theorem [3)).
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Let Ep(z) denote the number of (isogeny classes of) MNT elliptic curves with
embedding degree & = 6 and CM discriminant D < z over finite fields IF, with
q < 2B. Then Eg(z) < E(z) for all B, and E(z) = limp_.o, Ep(z).

We computed Ep(z) for selected values of B, by running Algorithm B] with
input N, for all 1 < N < B. Table shows the ratios of Eg(z) and the lower
bound () for z = 2¢, » < 2%° and B = 160, 300, 500, 700, 1000.

Table 1. Ratios R(B,z) of Ep(z) and the lower bound (&) for FE(z). Here Ep(z)
denotes the number of MNT curves with & = 6 and D < z over IF, with ¢ < 27.

R(B,2) = Ep(2)/(0.49 , V%, ), where z = 2'.
i B=25 B=50B=100 B=160 B=300B =500 B ="7008 = 1000
10 30.64 30.64 30.64 33.70 33.70 33.70 33.70 33.70
11 31.45 34.08 34.08 36.70 36.70 36.70 36.70 36.70
12 26.47 28.68 28.68 30.88 30.88 30.88 30.88 30.88
13 23.80 25.63 25.63 27.46 27.46 27.46 27.46 27.46
14 24.02 27.02 27.02 30.02 30.02 30.02 30.02 30.02
15 23.15 26.81 26.81 30.46 30.46 30.46 30.46 30.46
16 21.57 2549 26.47 29.41 29.41 29.41 29.41 29.41
17 20.35 24.26 26.61 29.74 29.74 29.74 29.74 29.74
18 19.23 23.57 25.43 27.92 27.92 27.92 27.92 27.92
19 18.57 23.46 25.42 27.86 28.35 28.35 28.35 28.35
20 16.85 21.83 24.51 26.81 27.19 27.19 27.57 27.57
21 15.22 21.20 23.58 25.67 26.87 27.47 28.06 28.06
22 14.83 22.01 26.64 28.73 29.66 30.12 30.81 30.81
23 14.32 22.74 2740 29.72 30.62 30.98 32.05 32.41
24 13.65 24.12 28.54 30.88 32.12 32.67 33.64 34.05
25 13.11 24.54 29.30 31.52 32.79 33.32 34.17 34.48

Let R(B,z) = E;g(,z)/(0.49(lo‘éz)2 ). As we would expect, R(B, z) is increasing
for fixed z as B increases. For the smallest values of B, we also see that R(B, z)
is essentially decreasing (for fixed B) as z increases. In fact, we expect that
lim, .. R(B,z) = 0 for any fixed value of B, as if X? — DY? = —8, then the
resulting field size ¢(< 2P) is of the order of magnitude of /D, which implies
that Fp(z) remains constant for large enough z. On the other hand, for larger
fixed values of B and in particular along the down-ward diagonal, R(B, z) seems
somewhat more stable (around 30, although there is an increase towards the very
end). It is tempting to conclude from this that the lower bound (I3 for F(z) has
indeed the right order of magnitude, and possibly is just off by a factor of around
30. So, let us try to estimate the number of (isogeny classes of) computable MNT
elliptic curves of embedding degree 6. That is, put zo = 1019(~ 233), and let’s

boldly assume that E(z) = 30 - (0.49(1O‘ézz)2). Then E(zp) =~ 30-92.4 = 2772.

For comparison, we found that Ey2s (219) = 10, Egio00 (219) = 11, Fy25 (224) = 124
and E21000 (225) = 326.
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As prime-order elliptic curves over fields of bitsize 155 — 170 approximately
match the security level of SKIPJACK (i.e., the 80-bit symmetric key security
level), we found it of interest to calculate the number of (isogeny classes of)
MNT elliptic curves over 155 — 170-bit fields. But the smallest discriminant for
which we found an MNT curve in the desired bit range has 21 bits, with the next
two such MNT curves appearing for 24-bit discriminants. These data certainly
do not allow for a meaningful extrapolation to z = 100,

5 Conclusion

Our analysis in this paper brought us closer to the true nature of the function
E(z), the number of prime-order elliptic curves over finite fields with embedding
degree k = 6 (MNT curves) and discriminant D < z. However, it would be nice
to be able to estimate the number of MNT curves of bounded discrimant and
given bit-size. Our experimental data for the cryptographically interesting range
are too limited to encourage any predictions.

Acknowledgements. The authors thank Florian Luca and Igor Shparlinski for
their feedback on an earlier version of this paper, which helped us to improve
the statement and proof of Theorem
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Algorithm 1. Pell Equation Solver
Input: D € ZZ, m € ZZ\{0} : D > m?, D is not a perfect square
Output: all minimal positive solutions (z,y) : 22 — Dy?> =m

B_1+—0,G_1 1
P0<—O, Qo<—1, apg <— L\/DJ,B()(—]., G()(—a()
1—0
repeat
i—i+1
P —ai—1Qi—1— Pi_1
Qi — (D—P)/Qi
ai — (P, +VD)/Qi]
Bi «—aiBi—1+ B;_2

10 G «— aiGic1+Gi—2

11: until Q; =l and i =0 (mod 2)

12: s« 0

13: for 0<j<i—1do

14:  if sz_ — DBJ2 =m/f? for some f > 0 then
15: Output: (fG;, fB;)

16: s—1

17:  end if

18: end for

19: if s == 0 then

20:  Output: No solutions exist

21: end if

Algorithm 2. Pell Equation Solver 2

Input: D € ZZ, m € ZZ\{0} : D < m?, D is not a perfect square
Output: all fundamental solutions (z,y) : 22 — Dy? =m

—_

©

11:
12:
13:
14:
15:
16:

: Find a minimal solution (u,v) to U? — DV? = 1 using Algorithm [ with inputs D,
1.
if m > 0 then

Ly — 0, Ly +— \/m(u— 1)/(2D)
else
L om/D. L = (om0 /(2D)

: for Ly <y < Ly do
if m + Dy? is a square then
T — \/m + Dy?

if (z,y) and (—=z,y) are not in the same class then
Output: (z,y), (—z,y)
else
Output: (z,y)
end if
end if

end for
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Algorithm 3. Elliptic curve parameters, embedding degree k = 6

Input: N, z

Output: EC parameters (q,n, D) where g—1 is an N-bit prime, ¢° = (mod n)
but ¢ 21 (mod n) for 1 <i <5, and D < z (where 4¢ — t> = DY?)

1: for 0 < D' < 3z, D'/3 squarefree, D' =9 (mod 24), —2 is a square modulo D’
do

2: if D’ > 64 then
3: find a minimal solution, (zo,¥o), to X? — D'Y? = —8 by using Algorithm [I]
with input D’, —8.
4:  else
5: find a minimal solution, (zo,¥o), to X? — D'Y? = —8 by using Algorithm
with input D’, —8.
6: end if
7: find a minimal solution, (u,v), to U?> — D'V? = 1 by using Algorithm [ with
input D', 1.
8: T — X0, Y < Yo
9: ifz=41 (mod 6) then
10: while |z| < 2%/?1 do
11: l—(xF1)/6
12: if (N —3)/2 <log,! < (N —2)/2 then
13: q— 4P +1,n—4”F2+1
14: if ¢ and n are primes then
15: Output (g,n, D'/3)
16: end if
17: end if
18: T x
19: x «— au+yvD’
20: Y — T+ uy
21: end while
22: end if
23:  x « xou — yovD', y «— uyo — TV
24: ifzx=+1 (mod 6) then
25: while |z| < 2%/?1 do
26: l—(xF1)/6
27: if (N —3)/2 <log,l < (N —2)/2 then
28: q— 4P +1,n—4?F2+1
29: if ¢ and n are primes then
30: Output (¢,n, D'/3)
31: end if
32: end if
33: T—x
34: x «— xu — yvD’
35: Y — uy — TV
36: end while
37  end if

38: end for
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Abstract. Let K be a p-adic local field and E an elliptic curve defined
over K. The component group of E is the group E(K)/E°(K), where
EO(K) denotes the subgroup of points of good reduction; this is known
to be finite, cyclic if £ has multiplicative reduction, and of order at
most 4 if F has additive reduction. We show how to compute explicitly
an isomorphism E(K)/E°(K) = Z/NZ or E(K)/E°(K) = 7Z/27.x 7./ 27.

1 Introduction

Let K be a p-adic local field (that is, a finite extension of Q,, for some prime p),
with ring of integers R, uniformizer m, residue field k¥ = R/(m) and valuation
function v. Let E be an elliptic curve defined over K. The component group
of E is the finite abelian group ® = F(K)/E°(K), where E°(K) denotes the
subgroup of points of good reduction.

When E has split multiplicative reduction, we have ¢ = Z/NZ, where N =
v(A) and A is the discriminant of a minimal model for E. In all other cases,
& has order at most 4, so is isomorphic to Z/nZ with n € {1,2,3,4} or to
7.)27 x 7./27. The order of @ is called the Tamagawa number of F/K, usually
denoted c or ¢,.

In this note we will show how to make the isomorphism x: E(K)/E°(K) — A
explicit, where A is the one of the above standard abelian groups.

The most interesting case is that of split multiplicative reduction. Here the
map « is almost determined by a formula for the (local) height in [3]. Specifically,
if the minimal Weierstrass equation for E has coeficients a1, as, as, a4, ag as
usual, for a point P = (z,y) € E(K) \ E°(K) we have x(P) = +n (mod N),
where n = min{v(2y+ a1z +as3), N/2}, and 0 < n < N/2. In computing heights,
of course, one need not distinguish between P and — P, but for our purposes this
is essential. We show how to determine the appropriate sign in a consistent way
to give an isomorphism x: E(K)/E°(K) = Z/NZ. Note that for an individual
point this is not a well-defined question since negation gives an automorphism of
Z/NZ; but when comparing the values of k at two or more points it is important.
We first establish the formula for Tate curves, and then see how to apply it to a
general minimal Weierstrass model.

We also make some remarks about the other reduction types, which are much
simpler to deal with, and also the real case.

A.J. van der Poorten and A. Stein (Eds.): ANTS-VIII 2008, LNCS 5011, pp. 118 2008.
© Springer-Verlag Berlin Heidelberg 2008
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One application for this, which was our motivation, occurs in the determina-
tion of the full Mordell-Weil group E(K), where E is an elliptic curve defined
over a number field K. Given a subgroup B of F(K) of full rank, generated
by r independent points P; for 1 < ¢ < r, one method for extending this to
a Z-basis for E(K) (modulo torsion) requires determining the index in B of
BN (\y<oo E°(Q,). [For p = oo, we denote as usual R = Q, and then E°(Q,)
denotes the connected component of the identity in F(R).] The component group
maps k for each prime p may be used for this, and are accordingly implemented
in our program mwrank [I].

We use standard notation for Weierstrass equations of elliptic curves through-
out.

2 The Split Multiplicative Case

We refer to [4, Chapter V] for the theory of the Tate parametrization of elliptic
curves with split multiplicative reduction.

2.1 The Case of Tate Curves

For each ¢ € K* with |¢q| < 1 we define the Tate curve E, by its Weierstrass
equation
Y2+ XY = X2 4+ au X + as,
where a4 = a4(q) and ag = ag(q) are given by explicit power series in ¢. We have
v(A) =wv(ag) = N, where N = v(q) > 0, and v(ayg) > N. Also, v(cs) = v(cg) = 0.
Reducing modulo 7%, the equation becomes Y (Y + X) = X?3; the linear

factors Y, Y + X give the distinct tangents at the node (0,0) on the reduced
curve over k.

Theorem 1. The map k: E(K) — Z/NZ given by

0 ifPeEYK)

+n  if P=(z,y) ¢ E°(K) and n = v(z +y) < v(y)
—n if P=(z,y) ¢ E°(K) and n = v(y) < v(z +y)
N/2 i P=(2,y) ¢ BXK) and v(y) = oz +1)

k(P) =

induces an isomorphism E(K)/E°(K) = Z/NZ. The integer n here always
satisfies 0 < n < N/2. The last case only occurs when N is even, and then
v(y) > N/2.

Remark. This is compatible with the result from [3] quoted in the introduction,
which here says that x(P) = +n, where n = min{v(2y+z), N/2}. What we have
done is decompose 2y + x as y + (y + x), where the summands come from the
tangent lines at the singular point, and consider the valuations of each summand
separately.
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Proof. Recall that the Tate parametrization gives an isomorphism ¢: K*/¢?R* =
E(K)/E°(K), and that  is determined by x(¢(u)) = v(u) (mod N) for u € K*.

Let P = ¢(u) = (z,y). Then z = X (u,q) and y = Y (u, ¢), where X (u, q) and
Y (u, q) are power series given in [4], §V.3, Theorem 3.1(c)]:

B u q"u q"/u 2mqg™ \
””‘(1—@”2((1—qmu>2+<qm/u—1>2 1—qm>’
2 m m
q"/u mq
' 1—u +Z(1—qmu +(qm/u—1)3+1—qm>'

First suppose that v(u) = n with 0 < n < N/2. The first series shows that
v(x) = n, since the term outside the sum has valuation n, while all those in the
sum have strictly greater valuation. Regarding y, the term outside the sum has
valuation 2n and all those in the sum have strictly greater valuation, except pos-
sibly the term (q"?;t/fns for m = 1, which has valuation N —n > n. Considering
the three cases N —n > 2n, N —n =2n,n < N —n < 2n, we find that

v(y) =2n if 0 <n < N/3;
v(y) > 2n if n=N/3;
n<ov(y)=N-—-n<2n if N/3 <n < N/2.

It follows that x(P) =n with n = v(y +z) = v(z) < v(y) as required. (We have
P €V, in the notation of [4, p.434].)

Next suppose that v(u) = —n with 0 < n < N/2. Now v(u~!) = n and
o(u™t) = —P = (z,—y —x), so by the first case we have x(P) = —k(—P) = —n,
where n = v(y) = v(zr) < v(r+vy) as required. (We have P € U, in the notation

of [4, p.434].)

Finally suppose that N is even and v(u) = N/2. Now we have v(y) = N/2,
while both v(xz) > N/2 and v(x +y) > N/2,s0 N/2 = v(y) < v(z + y). (We
have P € W in the notation of [4, p.434].)

2.2 The General Case

Let E with split multiplicative reduction be given by the minimal Weierstrass
equation F'(X,Y) =0, where

F(X,Y)=Y?+ a1 XY +a3Y — (X® + asX? + as X + ap).
Thus a; € R, v(A) = N > 0 and v(cs) = 0. Define

o = CZ1(18b6 - b2b4);

Yo = ch(ai’a4 — Za%agag + 4daiasa4 + 3a1a§ — 36aiag — 8a§a3 + 24azay)

1
= —2(a1xo + as).

Our result is as follows.
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Theorem 2. Let ay,as be the roots of T? + ayT — (as + 3xg); these lie in R
and are distinct. For P = (z,y) € E(K) \ E°(K), set

n; = v((y — yo) — ci(x — xo))
fori=1,2. Then x(P) € Z/NZ is given by

+n  ifn=ng <ng;
K(P)=<—n ifn=n1 <ng;
N/2 if ny = na,

where in the first two cases we have 0 < n < N/2, and the last case can only
occur when N is even.

Remarks. Note that in order to determine x(P) we need to compute the quan-
tities zo, 3o, a; only modulo 7V (or even 7/™/21), and that these depend only
on F, not on P. Also, if we interchange the order of the roots «; the only effect
is to replace k(P) by —k(P) consistently, which is harmless since negation is an
automorphism of Z/NZ. Finally note that

[((y —yo) — ai(z — z0)] + [(y — yo) — aa(x — z0)] = 2y + a1z — (2y0 + a170)
=2y + a1 + as,

so this result is compatible with the formula from [3] quoted in the introduction.

Proof. With xg, yo as given we may check that F(xo,y0) = Fx(xo,y0) =
Fy (20,90) = 0 (mod 7). (Here the subscripts denote derivatives.) In other
words, (0, %0) reduces to a singular point, not just modulo 7 but modulo 7.
As in the first step of Tate’s algorithm (where normally one only requires z
and yo modulo 7), we shift the origin by setting X = X' +xz¢ and Y =Y’ + yp.
This results in a new Weierstrass equation with coefficients a satisfying a} = ay,
aly = ag + 3xg, by = by + 1220 € R*, and

ay=ay=ay=b,=by=by=0 (mod 7).

Since we have split multiplicative reduction, the quadratic T2 + a{T — ab,
whose discriminant is b5, splits modulo 7 and hence by Hensel’s Lemma splits
over K. The roots aj, as lie in R, and a; — ag € R* since (a1 — ag)? = b).

Now set f3; = (a1 — an)~Y(a), — aza}) for i = 1,2. Then §; =0 (mod 7V) and
we may check that

F={"-a1 X' =3 — X'+ fa) — (X3 + b} /b})
=Y -~ XY —axX') - X"
=Y'(Y'"4+d/X") = X'® (mod 7),
where we have set Y/ =YY" + a1 X'+ 31 and af = oy — as. (Here we have used:

b1 — P2 = —ah, a1f2 — asfy = aly, and bh(ay — B152) = bg.) After a further
scaling by the unit af, this has the form of a Tate curve.
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Applying the result of the previous section, we see that x(P) is given in terms

of the valuations of y” and y” + ajz”. Now

y' =y —oz’ = (y—yo) —ar(x —x0) (mod 7)

and

y' +ada" =y — asr’ = (y —yo) — az(z — o) (mod 7)),

which implies the result as stated.

2.3 Example

Let E be the elliptic curve defined over Q denoted 80251 in the tables [2], whose
Weierstrass equation is

Y24+Y = X3+ X2+ 2242417292 X + 12640098293119.

Take P = (335021/4,224570633/8), a generator of the Mordell-Weil group E(Q)
which is isomorphic to Z.

We consider E over K = Qg, where it has split multiplicative reduction
of type Is;. Thus N = 31. We compute zg = 556930682563112 and yg =
308836698141973 modulo 33!, and a1 = —ae = 256142918648120. Now for the
point P, we find

(y — yo) — ar(x — z0) = 446797736663247 (mod 33'),
(y — yo) — aax — x0) = 325294064834346 (mod 331),

with valuations ny = 12 and ng = 6, so k(P) = +6 (mod 31).

To test our implementation of the computation of k, we computed x(iP)
independently for 1 < ¢ < 30, checking that x(:P) = 6i (mod 31). The results
are given in the following table:

12 3 4 5 6 7 8 9 1011 12 13 14 15
ep 12 19 13 7 1 10 20 14 8 2 8 20 15 9 3
eo 6 12 18 14 2 5 11 17 16 4 4 10 16 18 6
k(@P) 6 12 -13-7-15 11 —-14-8-2 4 10 —15-9-3
130 29 28 27 26 25 24 23 22 21 20 19 18 17 16
ep 6 12 18 14 2 5 11 17 16 4 4 10 16 18 6
e2 12 19 13 7 1 10 20 14 8 2 8 20 15 9 3
k(iP)—-6-12 13 7 1 -5—-11 14 8 2 —4-10 15 9 3

3 Other Reduction Types

For completeness we will now discuss the other reduction types, as well as K = R.
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3.1 Types Where & Is Trivial

When the reduction type is Iy (good reduction), IT or IT*, the component group ¢
is trivial, i.e. ¢ = 1. This is also the case for non-split multiplicative reduction
of type I, when m is odd, and in the “non-split” cases for types IV, IV*, and
I§. Here there is nothing to be done.

3.2 Types Where & = 7/27

When the reduction type is non-split multiplicative of type I,,, when m is even,
III or IIT*, and some cases of type I,,, we have & = 7Z/27. Here all we need do
is define x(P) = 0 if P has good reduction and 1 otherwise.

3.3 Types Where & = 7Z/37Z

When the reduction type is IV or IV* we may have ¢ = Z /37 in the “split” case.
Our task is to see how to distinguish the two nontrivial components or cosets of
E°(K) in E(K).

First consider Type IV. After translating the model so that the singular point
is (0,0) (mod m), as in the first step of Tate’s algorithm, the quadratic h(T) =
T? + 7= tasT — 7~ 2ag has distinct roots in the residue field k (since if the roots
only lie in a quadratic extension of k then ¢ = 1 and @ is trivial: the “non-split”
case). Let aq, ag be the roots of h(T'). Then any point P = (x,y) of bad reduction
has y = ;7 (mod 72) for i € {1,2}, as may be seen by reducing the Weierstrass
equation modulo 2. These two cases distinguish the two components, and we
may define x(P) =14 (mod 3).

We may translate this condition to apply to the original coordinates of the
point: if the singular point is (zg,yo) (mod 7) then for P = (z,y) € E(K) \
E°(K) the value of y — o lies in one of two distinct residue classes modulo 72,
which we may label arbitrarily and use to distinguish the nonzero values of k.
However, this is hardly worthwhile in practice: instead we may simply define
k(P1) = 1 (mod 3) for the first point P; of bad reduction we encounter, and
then for subsequent such points P we have x(P) = +1 according as P — P; does
or does not have good reduction.

This latter strategy is certainly to be preferred for the case IV*, where (refer-
ring to Tate’s algorithm) a second change of variables may be required. Otherwise
we would need to determine 35 (mod 72) and use the value of y — yo (mod 72)
to distinguish the cases.

3.4 Types Where & = 7 /47

This can only occur with Type I*, when m is odd. Since this route in Tate’s
algorithm is the most subtle, rather than analyze the situation in more detail
we can proceed as follows.

Set k(P) = 0 if P has good reduction; otherwise set x(P) = 2 if 2P has good
reduction; otherwise x(P) = £1. A simple strategy, similar to that used for the
7,/3Z case, may be used to distinguish the latter in practice.
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3.5 Types Where & 2 7/27 X 7/27

This can occur with Type I, when m is even (including m = 0). Noting that the
automorphism group of @ includes all permutations of its nontrivial elements,
we may proceed as follows:

Set x(P) = (0,0) if P has good reduction; otherwise set x(P;) = (1,0) for the
first point P; of bad reduction and x(P,) = (0, 1) for the first point P, such that
neither P nor P; + P has good reduction. Now we can determine x(P) for all
P simply by testing P, P+ P, and P + P, for good reduction.

In case Type If, the nonzero values of x(P) may also be distinguished by the
residue of z —x¢ (mod 72), where as usual (zq, o) (mod ) is the singular point
on the reduction; but we have not attempted to extend this to a criterion for
m > 0.

3.6 The Real Case

For completeness we finish by mentioning the case K = R, where the component
group is trivial if A < 0 and has order 2 when A > 0. In the latter case we may
test whether a given point P = (x,y) lies in E°(R) by checking whether ¢’(z) > 0
and ¢”(z) > 0, where g(X) = 4X3 + by X2 + 2b, X + bg; note that this may be
done using exact arithmetic when F is defined over Q and P € E(Q), and so
does not rely on approximating the real 2-torsion points.
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Abstract. The theory of 4-descent on elliptic curves has been developed
in the PhD theses of Siksek [I8], Womack [2I] and Stamminger [20].
Prompted by our use of 4-descent in the search for generators of large
height on elliptic curves of rank at least 2, we explain how to cut down
the number of class group and unit group calculations required, by using
the group law on the 4-Selmer group.

1 Introduction

Let E be an elliptic curve over a number field K. A 2-descent (see e.g. [3], [5],
[19]) furnishes us with a list of quartics g(X) € K[X] representing the everywhere
locally soluble 2-coverings of E, and hence the elements of the 2-Selmer group
S®@)(E/K). If we are unable to resolve the existence of K-rational points on the
curves Y2 = g(X), then it may be necessary to perform a 4-descent. Cassels [4]
has constructed a pairing on S?)(E/K) whose kernel is the image of [2], in the
exact sequence

E[2)(K) — S®(B/K) ~ $@(B/K) 25 s (B/K) | (1)
We have checked [I2] that this pairing agrees with the usual Cassels-Tate pairing
on III(E/K)[2]. An improved method for computing the pairing has recently
been found by Steve Donnelly [§].

Computing this pairing is sufficient to determine the structure of S (E/K)
as an abelian group, but if our aim is to find generators of F(K) of large height,
then we also need to find equations for the 4-coverings parametrised by this
group. For this we use the theory of 4-descent, as developed in [14], [2I] and [20].
Each quartic g(X) has an associated flex algebrell F = K[X]/(g(X)), which is
usually a degree 4 field extension of K. The existing methods of 4-descent (as
implemented in Magma [2] by Tom Womack, and improved by Mark Watkins)
require us to compute the class group and units for the flex field of every quartic
in the image of [2]... In this article we explain how to cut down the number of class

1 'We keep the terminology of [7, Paper 1]. Were we to use a term specific to 2-descent
then “ramification algebra” would seem more appropriate.
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group and unit group calculations, by using the group law on S¥(E/K). This is
a non-trivial task since by properties of the obstruction map [7], [I5], we expect
to have to solve an explicit form of the local-to-global principle for the Brauer
group Br(K). We also give a test for equivalence of 4-coverings (generalising the
tests for 2-coverings and 3-coverings given in [5], [6] and [9]).

Even when the calculation of class groups and unit groups does finish, the out-
put may be unmanageably large. We get round this by using a method described
in §2 to find good representatives for elements of K * /(K *)™. This technique is
not specific to descent calculations on elliptic curves.

2 Selmer Groups of Number Fields

Let K be a number field of degree [K : Q] = d and let S be a finite set of primes
of K. The n-Selmer group

K(S,n)={z(K*)" € K*/(K*)" : ordp(z) =0 (mod n) for all p ¢ S}

plays an important role in the construction of number fields via Kummer theory,
and in the theory of descent on elliptic curves.

The height of an algebraic integer x in K is H(x) = H?:I max(|o;(x)],1)
where o1, ...,04 are the distinct embeddings of K into C. We write 71 (resp.
r9) for the number of real (resp. complex) places, and Ag for the absolute
discriminant. The Minkowski bound is

)
mg = (i) 3}1\/\AK\ :
Theorem 2.1. Let n > 1 be an integer. Let a € K* with (o) = bc™ and b an
integral ideal. Then there exists 3 € b with a3~ € (K*)" and
H(B) < max(myxNb,exp(nd)) .
The proof uses two lemmas.

Lemma 2.2. Ifay,...,aq are positive real numbers with Z?:l a; < dc? then

d
I_Imax(ai7 1) < max(c,exp(d)) .
i=1

Proof. We may assume that a; > 1for 1 <i<randa;, <1lforr+1<i<d.
By the inequality of the arithmetic and geometric means we obtain

d T
Hmax(ai, 1) = Hai < f(r/d)
i=1

i=1

where f(z) =
flr/d) < f(1)

o

for all 0 < < 1. Thus

r=%c® If log(c) > d then f'(z)
= e obtain

>
c¢. On the other hand if log(c) < d

=

log f(z) < dz(l1—logz) <d . O
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We extend the embeddings o; : K — C to maps defined on K ®g R.

Lemma 2.3. Let A be a lattice in K ®g R of covolume V. Then there ezists

non-zero £ € A with
d A2 1/d
Sl < (1) av)

Proof. This is a standard application of Minkowski’s convex body theorem. 0O

The usual application of Lemma is to show that every fractional ideal b in
K contains an element 3 with [Ng q(8)] < mgxNb.

Proof of Theorem 2.1. Let | - | be the map on K ®g R = R"™ @ C™ given com-
ponentwise by z — |z|. We apply Lemma 23] to the lattice A = |a|/"¢~! and
let 8 = @Ig". The covolume of A is

[Nijo(@)V/™(Ne) ™' V| Ak| = (N0)/" /| Ak | .
Thus 3 satisfies
d 1/d

S los(@)" < d (muc(No) )

i=1
Since 3 € b is an algebraic integer, we deduce by Lemma [Z2] that

H(8)"" < max(m(Nb)'/", exp(d))
as required. 0

Theorem 2] shows that every element of K (S,n) is represented by an element
of K of height at most

max (mi ([T Mp)" ", exp(nd)) . (2)
pes

Since there are only finitely many elements of K of height less than a given
bound, this gives a new proof that K (S, n) is finite. More importantly for us, re-
placing Minkowski’s convex body theorem by the LLL algorithm, we obtain an al-
gorithm for computing small representatives of Selmer group elements from large
ones. This is particularly useful when using Magma’s function pSelmerGroup (so
n = p a prime here) which returns a list of “small” elements of K*, and a list of
exponents to which they must be multiplied to give generators for K(S,p). In
many examples of interest to us, multiplying out directly in K * gives elements
of unfeasibly large height. Using our algorithm (after every few multiplications)
eliminates this problem. Moreover, the process can be arranged so that the only
factorisations required are of the original list of “small” elements.

In principle one could also compute K (S, n) by searching up to the bound (2J),
but of course this would be absurdly slow in practice.
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3 Background on Quadric Intersections

Let QZ(K) be the space of “quadric intersections” i.e. pairs of homogeneous
polynomials of degree 2 in K[x1, 22,23, 24]. Given (A, B) € QZ(K) we identify
A and B with their matrices of second partial derivatives, and compute

g(X) =det(AX + B) = aX* +bX3 + cX?* +dX +e¢ .

The invariants of the quartic g(X) are I = 12ae — 3bd + ¢ and J = 72ace —
27ad? — 27b%e + 9bed — 2¢3, and the invariants of (A, B) are ¢4 = I and ¢g = 5 J.
It is well known (see [I]) that if A = (¢ — ¢2)/1728 is non-zero then the curves
Cy ={Y? = g(X)} and Cy = {A = B = 0} C P? are smooth curves of genus
one with Jacobian

E: y?=2%—27Tcyx — 5dcs . (3)

Moreover Cy is a 2-covering of Cy (see [II, [I4]) the composite Cy — Cs X p!
being given by —T7/T» where T} and T are the quadrics determined by

adj((adjA)X + (adjB)) = a?AX3 + aT1 X? + eT2 X + 2 B.

Following [6], we say that quartics g1,g2 € K[X]| are K-equivalent if their
homogenisations satisfy g1 = u?g2 o M for some p € K* and M € GLy(K).
Quadric intersections (A, B), (4, B') € QI(K) are K-equivalent if

(AI7B/) = (m11Ao N +miaBoN,moiAoN +mosB o N)

for some (M, N) € G4(K) := GLy(K) x GL4(K). It is routine to check that the
quartics associated to equivalent quadric intersections are themselves equivalent.

In the course of a 4-descent, a 2-covering Cy of Cs is computed as follows.
Let Cy have equation Y? = g(X) and flex algebra F' = K[0] = K[X]/(g(X)).
Suppose we are given { € F* with Np/k(§) = a mod (K*)? where a is the
leading coefficient of g. (The existence of such a £ is clearly necessary for the
existence of K-rational points on Cs.) We consider the equation

X—-0= 5(1'1 + 200 + 1‘392 + $493)2 .

A quadric intersection, defining a 2-covering Cy of Cs, is obtained by expanding
in powers of 8 and taking the coefficients of #? and 63. The answer only depends
(up to K-equivalence) on the class of ¢ in F*/K*(F*)2. Using the method
of §2 to find a good representative for this class, can significantly decrease the
time subsequently taken to find a good choice of co-ordinates on IP3, that is, to
minimise and reduce the quadric intersection (using the algorithms in [21]).

4 Galois Cohomology

We keep the notation and conventions of |7, Paper I|. Let # : C — E be
the 2-covering corresponding to & € H'(K,FE[2]). The flex algebra of ¢ is
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F = Mapy (?, K) where @ is the fibre of 7 above 0. We note that C' is a torsor
under E, and & is a torsor under E[2]. Let (£) be the subgroup of H*(K, E[2])
generated by &, and let U be the map H' (K, E[2]) x H'(K, E[2]) — Br(K)[2] in-
duced by cup product and the Weil pairing e5 : E[2] x E[2] — pa. The following
theorem is a variant of a standard result (see for example [17], [20]).

Theorem 4.1. There is a canonical isomorphism

1
ker (H <[<2:>E[2D N Br(K)) > ker <FX/KX(FX)2 Nerk KX/(KX)?) .
Proof. Let F = F @k K. We may identify F' = Map(®, K) and us(F) =
Map(®, p12). These are identifications as Galois modules, the action of Galois
being given by o(f) = (P — o(f(c~'P))). An easy generalisation of Hilbert’s
theorem 90 shows that H'(K, F™) = 0 and hence H'(K, uy(F)) = F* /(F*)2.
We define N : Map(®, p2) — p2 by N(f) = [[pee f(P). The constant maps
give an inclusion ps — Map(®P, ua) with quotient X (say). We thus have short
exact sequences of Galois modules

0 — p1g — Map(®, pp) = X — 0

and

0—FE2 -5 x5y —o0
where w(T) is the class of P +— eo(P — Py, T), for any fixed choice of Py € &.
Taking the long exact sequences of Galois cohomology we obtain a diagram

KX/<KX)2

\
F></(F><)2

w
qx
\

ne S =HUK,E[R) -HUK,X) = KX/(KX)?

Once we have shown that the diagram commutes, the theorem follows by a
routine diagram chase.

We check that the lower left triangle commutes. Let n € Z1(K, E[2]) be a
cocycle. Then w,(n), is the map P+ ea(P — Py, 7, ). Applying the connecting
map A gives a € Z%(K, po) with

agr = €2(P — 0 (Py),0(n:)) e2(P — Po,n5) e2(P — POvno‘r)il
= ez(Po — o(P),0(nr)) e2(P = Fo,0(n7) + o — 1)
=e2(&o,0(nr)) -
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This is the cup product of £ and 1. The commutativity of the upper right triangle
is clear. 0

The case £ = 0 of Theorem [ Tlis well-known. In this case F' is the étale algebra
K x L of E[2] where E: Y2 = f(X) and L = K[X]/(f(X)).

Corollary 4.2. There is a canonical isomorphism
0 12 = e (227 Y R0

The following theorem, due to Steve Donnelly, gives an explicit description of
the isomorphism of Theorem ET] (in one direction). We make the identification
of Corollary 1.2 so that now ¢ is represented by some o € L*. Let LF be the
tensor product L ®f F and let L[\/a] be the algebra L[X]/(X? — «). By the
formulae in [5l, §3] there is a natural inclusion L[y/a| C LF. (If Gal(F/K) = S,
then L is the resolvent cubic field, LF is the usual composite of fields, and we
are quoting that « is a square in LF'.) Let 7 be the non-trivial automorphism of
L[\/a] that fixes L.

Theorem 4.3. Let 6 € F* with Np/x(6) = k2 for some k € K. Suppose we
are given v € L[\/a]* with Npp,1[/a1(6)/k = 7(v)/v. Then

B:=Npp/pi/a] OV = kNp( /1) € L* (4)

N
represents an element of ker (L* /(L*)? e K*/(K*)?) mapping to 6 under
the isomorphisms of Theorem [{_1] and Corollary[{.3

Proof. We identify
LF =L®k F =Mapg((E[2]\{0}) x ®,K) .

Then Npp/piy/a1(6) is the map (7', P) = 6(P)6(T + P). So fixing a base point
Py € & we can rewrite the first equality in (@) as

B(P — Py) = 6(P)6(Po)v(P — By, P)? (5)

for all P € @ with P # P,.
The image of 3 in H'(K, X) is represented by a cocycle (1,) where

bo(P) = VP —Py) it P#£ P
7 1 ifP="r .
Tt follows by (@) that

Yo (P) = TV (P) 7Y (Py)

for all P € @. (The case P = P, is just 1 = (41)%.) By the definition of X we
may ignore the term involving Py, and so (¢, ) also represents the image of ¢ in
HY(K, X). O
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Remark 4.4. If ¢ = Nyp/r1/01(0)/k then N ,1/(¢) = 1. So by Hilbert’s

theorem 90 there exists v € L[y/a]* with ¢ = 7(v)/v. The construction of
Theorem therefore gives a well-defined map

ker (FX/KX(FX)Q ity KX/(KX)2> DX {1, a}(LX)?

The ambiguity up to multiplication by « is predicted by Theorem EJl and in
this construction comes from the arbitrary choice of sign for k.

5 Testing Equivalence of 4-Coverings

Let g(X) € K[X] be a (non-singular) quartic with flex algebra F' = K|[f] =
K[X]/(g(X)). We put QT(K)*'=¢ = {(A, B) € QI(K) : det(AX +B) = g(X)}.
If (A, B) € QZ(K)%'=9 then keeping the notation of §3] we define

Q=0""'eA+ T, +0T» + 0*aB (6)

with suitable modifications if ae = 0. (For example if e = 0 then the “0 = 0
component” of Q is —dA +T;.) Then Q is a rank 1 quadratic form, i.e. Q = £/?
for some & € F* and ¢ € Flxy,x2, x3,x4] a linear form. This defines a map

A QI(K)YT — FX/(F*)?; (A,B) —¢
inverse to the construction of §3

Lemma 5.1. Quadric intersections in QT (K)I*=9 define isomorphic coverings
of Co = {Y? = g(X)} if and only if they are related by a transformation
(ulz, N) € G4(K) with p? det(N) = 1.

Proof. If © : Cy — Ca is the 2-covering defined by (A, B) € QZ(K)°*=9 and
Py € Cy is a ramification point of Co — P! then the divisor 7*(P,) is a hy-
perplane section of C4 (in fact cut out by the linear form £). So if a pair of
quadric intersections determine isomorphic 2-coverings of Cy, then they must
be K-equivalent. Moreover, the equivalence (M, N) € G4(K) is of the form de-
scribed since, by definition of a 2-covering, the induced self-equivalence of g must
be trivial as an automorphism of Cs. O

If (Ao, Bo) € QZ(K)4°*=9 defines Cy C P? then the 2-coverings of C are para-
metrised as twists of Cy — Co by H'(K, E[2]). This defines a map

QI(K)det:g

{(ul2,N) € G4(K) : p>det N =1} — H'(K,E[2)) .

¢o :

We find that quotienting out by the transformations with p?det N = —1 cor-
responds to quotienting out by (£2) where & € H'(K, E[2]) is the class of g.
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Theorem 5.2. The following diagram is commutative.

QI (K)det=9 A
{(nl2,N)EG4(K) : p? det N=+1} >FX/KX(FX)2
“A(Ao,Bo)
\
%o FX/K*(F*)?
T
v v
HY (K, E(2) ~ H'(K, X)

(€2)

Proof. This is a variant of [20, Theorem 6.1.4]. Let Qp = /3 and Q1 = & 02
be the rank 1 quadratic forms determined by (Ao, Bo) and (A, B). If (ulz, N) €
G4(K) relates (A, B) and (Ag, Bp) then by properties of the Weil pairing

- lyoa(N)N' _ a(lyoN)
w*(¢o(A,B))—(U'_> ’ 4 B EOOON )

Since Q1 = pu Qg o N, this works out as ¢.(£p&1). a

The maps ¢¢ and w, of Theorem [5.2] are injective. It follows that A is injective.
So to test whether a pair of quadric intersections (A1, B1), (As, Bs) € QZ(K)
are equivalent we proceed as follows. We have implemented this test in the case
K = Q and contributed it to Magma [2].

Step 1. Let ¢;(X) = det(A; X + B;) for i = 1,2. We test whether g; and g
are equivalent, using one of the tests in [5], [6]. We are now reduced to the case
g1 = g2. (If there is more than one equivalence between ¢g; and go then we must
repeat the remaining steps for each of these.)

Step 2. Compute & = \(A;, B;) for i = 1,2 by evaluating the quadratic form (@)
at points in P3(K). It helps with Step 3 if we use several points in P3(K) to give
several representatives for the class of & in F*/(F*)2. (Spurious prime factors
can then be removed from consideration by computing ged’s.)

Step 3. Let S be a finite set of primes of K, including all primes that ramify
in F. We enlarge S so that &,& € F(S’,2) where S’ is the set of primes of F'
above S.

Step 4. The quadric intersections are equivalent if and only if £,&, ! is in the
image of the natural map K(S,2) — F(S’,2). We cut down the subgroup of
K (S,2) to be considered by reducing modulo some random primes, and then
loop over all possibilities.

In the case that (A1, B1) and (Az, Bz) are equivalent, we can reduce to the
case Q1 = &102 and Qy = &/3 with 5152_1 € K. Then solving ¢1 o N = {5
for N € Maty(K), gives the change of co-ordinates relating the two quadric
intersections. This transformation is also returned by our Magma function.
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6 Adding 2-Selmer and 4-Selmer Elements

In §8 we describe a general method for adding 4-Selmer group elements. This
involves solving an explicit form of the local-to-global principle for Br(K). But in
the special case where we add 2-Selmer and 4-Selmer elements, no such problem
need be solved. This is essentially because (by a theorem of Zarhin [22] relating
the cup product in Theorem ] to the obstruction map in [7, Paper 1|, [15]) we
have already solved all the conics we need when doing the original 2-descent.
To make this explicit we have found the following partial description of the
isomorphism of Theorem E1]

Let g(X) € K[X] be a quartic with invariants I and J. Let L = KJp] where
@ is a root of f(X) = X3 —3IX + J. We assume that the discriminant Aq =
27(413 — J?) is non-zero. Formulae in [5], [6] allow us to represent g by a =
ao + arp € L* with ag,a1 € K and Ny k() € (K*)?. We assume a ¢ (L*)?.
As in flwe put F = K[X]/(g(X)) and LF = L ®k F.

Theorem 6.1. If 3, € L* are linear in ¢ with Ny x(3), Npjk(v) € (K*)?
and afy € (L*)?, then the isomorphisms of Theorem [ and Corollary -2 map
each of B and ~y to the class of

e (e (1) <5

Proof. Let o1 = ¢, @2, 3 be the K-conjugates of ¢, and likewise for «, 3, v, m
where a3y = m?. Using that a, 3, v are linear in ¢ we compute

(Vaz — az)*(v/Bays — VB372)?
Ao (p2 — ¢3)? '
The hypotheses of Theorem are therefore satisfied with

Nip/niya)(0) =

(ag — a3)(Bayz — B3y2)  ai(bico — bocy) x
k= = eK
Ao (02 — p3)? Ag

and (swapping § and « if necessary to avoid dividing by zero)

1 (Va2 — az)(VB2y3 — VBa2) 1 maf3 +m3fz [V273

1% = =

Vazfays + VasfBsy2 maoys +msy2 \| B2fs
We are done since

2
(Va2Bovs+ 1/ asfBsy2)? = <m2737_;?372) =+ mod (L*)? . 0

We give an example in the case K = Q. The quartics

g1(X) = —675X% — 7970X° — 18923 X2 + 27176 X — 7848
g2(X) = —5483X* 4+ 10470X° 4 8869X 2 — 13240X — 8768
g3(X) = —3728X% — 8536 X3 + 9037X2 + 15940X — 13000
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have invariants I = 1071426889 and J = 70141299507574. Moreover they sum
to zero in S (E/Q) where E : —3Y2 = f(X) = X3 —3IX+J. Let L = Q(p) =
Q[X]/(f(X))and F1 = Q(0) = Q[X]/(g1(X)). We use the existing FourDescent
routine in Magma to compute 2-coverings D; of C; = {Y? = ¢;(X)} for i = 2,3
and then add these using the method of §8l to give a 2-covering Dy of C; =
{Y? = g1(X)}. By a formula in [5] the quartics g1, g2, g3 are represented by

= —900p + 29459500
= (—21932¢ + 717892516)/3
(—14912¢ + 488109376)/3

2 @e
|

in L*/(L*)?. Theorem [E1 and the map X in §5 convert Cy and D; to
5 = 265659750 + 32764441562 + 91778693660 — 582546987

and &1 = 472503+591650%+1684966 — 106600 in F}* /Q> (F}*)?. We then multiply
6 and & in F}* and recover a new 2-covering D) of Cy by the method of §3l By
Theorem [52] this new 4-covering of F represents the sum of ¢.(C2) and Dy in
S®(FE/Q) where t, is the map in (). Notice that at no stage of the computation
of Dy and D} did we need to find the class group and units of Fi, although it is
only for much larger examples that this saving becomes worthwhile.

7 Computing the Action of the Jacobian

In this section we generalise the formulae of [9], §7] from 3-coverings to 4-coverings.
The main new ingredient is a certain generalisation of the Hessian, introduced in
[10]. This is an SLo(K) x SL4(K)-equivariant polynomial map H : QZ(K) —
Q7 (K). In the notation of §3lit is given by

H : (A B)w— (6T — cA—3bB, 611 —cB — 3dA) . (7)

The analogue of the Hesse pencil of plane cubics, is the “Hesse family” of
quadric intersections

Ula,b) = (a(2? + axg) — 2bxoxy, a(xs + x3) — 2bx123)

with invariants

ca(a,b) = 28(a® + 14a*b* + b%)
co(a,b) = —2'2(a'? — 33a8b* — 33a*b% + b'?)
A(a,b) = 221 (a* — b1)?

and Hessian U(a’,b") where o’ = —2%a(a* — 5b*) and b’ = 2%b(5a* — b*).

If U € QZ(K) is a non-singular quadric intersection with Jacobian F, then
the pencil of quadric intersections spanned by U and its Hessian is a twist of
the Hesse family. So there are exactly six singular fibres, and each singular fibre
is a “square” (really a quadrilateral spanning P?). Each square is uniquely the
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intersection of a pair of rank 2 quadrics and the union of these quadrics is the
set of fixed planes for the action of My on P? for some T € E[4] \ E[2]. So there
is a Galois equivariant bijection between the syzygetic squares and the cyclic
subgroups of E[4] of order 4. (Our terminology generalises that in [I3], §I1.7].)

Lemma 7.1. Let U be a non-singular quadric intersection with invariants cy,
c¢ and Hessian H. Let T = (zp,yr) be a point of order 4 on the Jacobian ({3).
Then the syzygetic square corresponding to +£T is defined by S = éxTU + H,
and this quadric intersection satisfies H(S) = v2S where

vr = (25 — bdegad — 216¢cexr — 243¢2) /(18y7) .

Proof. We may assume that U belongs to the Hesse family and that T =
(243(a* — 5b%),273% (a* — b*)b?). The lemma follows by direct calculation. O

Let C' C P2 be a genus one normal curve of degree 4, defined over K, and with
Jacobian E. Let L/K be any field extension. Given 7' € E(L) a point of order 4,
we aim to construct M € GL4(L) describing the action of T on C. We start
with a quadric intersection U defining C'. Then we compute the syzygetic square
S = éxTU + H as described in Lemma [[]Jl Making a change of co-ordinates
(defined over K) we may assume

— The point (1:0: 0 : 0) does not lie on either of the rank 2 quadrics whose
intersection is the syzygetic square.
— The line {x3 = x4 = 0} does not meet either diagonal of the square.

Let A and B be the rank 2 quadrics in the pencil spanned by S, scaled so that
the coefficient of x% is 1 in each case. These quadrics are defined over a field L’
with [L' : L] < 2, and are easily found by factoring the determinant of a generic
quadric in the pencil. We factor A and B over K as

A= (v1 + a1z + Biws + y174) (21 + 3T + G373 + Y374)
B = (z1 + asxa + Baxs + yox4) (21 + qaza + faxs + yaza) .

Then we put

ar fim
ay B2 7o
az (3 73
ay By ma

—

and £ = a1 — iy — ag + iy where i = /—1.
Theorem 7.2. If £ # 0 then the matrixz
1
My =¢P7! B P
—i

belongs to GL4(L) and describes the action of T (or —=T') on C.
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Proof. The image of this matrix in PGL, has order 4, and acts on P? with fixed
planes defined by the linear factors of A and B. So the second statement is clear.
Theorem [73] shows that Mp has entries in L. (It may also be checked directly
that each entry is fixed by Gal(L'(i)/L).) O

Any polynomial in the «y, (;, v; invariant under the action of Cy x Cy that
swaps the subscripts 1 «» 3 and 2 <+ 4 may be rewritten as a polynomial in the
coefficients of A and B. We write A = Zigj ajjx;xy and B = Zigj bijxix;. Then
by computer algebra we find an expression for k = (a1 — a3)(a2 — ay) det(P) as
a polynomial in the a;; and b;;, and likewise for the entries of

M; = (ag — ag)adj(P)Diag(1,0,—1,0)P
and
My = (aq — as)adj(P)Diag(0,1,0,—1)P .

Let S = (MA+ 1B, Ao A+ puoB) with \;, u; € L. Then k € L, whereas if A
and B are not defined over L then Gal(L’'/L) interchanges \1 < Ao, p1 < a2
and M1 — MQ.

Theorem 7.3. The matriz Mt of Theorem[7.2 is given by

a%Q — 4(122 M1 T b%Q — 4b22 Mg + /\1/12 — )\2[1,1(

K K v

MT = Ml _M2)

where vp = (23 — bdeyad — 216c6zr — 243c3)/(18y7r).

Proof. By our choice of co-ordinates we have oy # a3 and as # a4. So k € L is
non-zero. We compute

kMp = &(a1 — ag)(ag — ag)adj(P)Diag(1,4, —1, —i)P
= 5(041 — ag)M1 + Zf(()(z — 014)M2
= (041 — 0&3)2M1 + (0&2 — a4)2M2 — iH(det P)il(Ml — MQ) .

Since H (2123, 2224) = (—2123, —7274) We have
H(S) = —(Aip2 — Aopi1)? det(P)*S .

By Lemma [ we deduce vy = £i(Apua — Aopuq) det(P), and substituting this
into the above expression for kK Mp completes the proof of the theorem. O

By our choice of co-ordinates it is impossible that both &€ = a1 —iae — ag +iay
and £ = ay + iag — ag — iay vanish. So if our formula for Mp gives the zero
matrix, we can instead use the formula for M_7 and take the inverse.

8 Adding 4-Selmer Group Elements

Finally we outline how the theory in [7] can be used to add elements of S (E/K).
(Of course, the method in §lshould be used in preference whenever it applies.) Let
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C C P2 be a 4-covering of E. We embed E in P? via (z,y) — (1 : 2 : y : 2?). In
[11l §6.2] we gave a practical algorithm for computing B € GL4(K) describing a
change of co-ordinates on P? taking C to E.

Now let R be the étale algebra of E[4]. Applying the formulae of §7] over each
constituent field of R, we compute M, M’ € GL4(R) describing the actions of
E[4] on E C P? and C C P? respectively. We scale these matrices by using the
method of §2to find good representatives for their determinants in R*/(R*)%.

These matrices now determine v € R™ = Map(FE[4], K *) by the rule
BM}.B~! = ~(T)Mr

for all T € E[4]. It is shown in [7, Paper I] that we may identify H' (K, E[4]) with
a certain subquotient of (R ® R)*. Our 4-covering corresponds to p € (R® R)*

given by the rule
Y(S(T)
S, T) =

for all S, T € E[4]. So if 4-coverings C and Cy determine v1,v2 € R”™, then their
sum (by the group law of H!(K, E[4])) corresponds to the product 1 7s.

It remains to explain how, if C' is everywhere locally soluble, we can recover
equations for C C P3 from y € R”. Let € € (R®R)*™ be the element determined
by (S, 7)1y = MSMTMgiT for all S,T € E[4], and let p be given by (). We
view R ® R as an R-algebra via the comultiplication R — R ® R and write
Tr: R® R — R for the corresponding trace map. In [7, Paper I] we defined the
obstruction algebra A, = (R, +, *.,) to be the K-vector space R equipped with
a new multiplication 2z *., 2o = Tr(ep.(z1 ® 22)).

In our situation, we already have a trivialisation of A, over K, namely the
isomorphism of K-algebras A, @ x K = Maty(K) given by

2 3 AT
TeE[4]

(®)

So picking a basis 71, ..., 716 for R gives matrices My, ..., Mg € Maty(K). We
then compute structure constants c;;r € K for the obstruction algebra A, by
the rule M;M; = 21166:1 Ciji M.

Our only implementation so far is in the case K = Q. In practice we fix an
embedding Q C C, and so 7 is represented by a 16-tuple of complex numbers
(to some precision). In [7, Paper III] we will explain how to choose a basis for R
so that the structure constants ¢;;, are (reasonably small) integers. This makes
it easy to recognise them from their floating point approximations.

Since C' is everywhere locally soluble, it is guaranteed by class field theory
that there is an isomorphism of K-algebras A, = Mat,(K). We must find such
an isomorphism explicitly, and for this we use the method of Pilnikova [I6], who
reduces the problem to that of solving conics over (at most quadratic) extensions
of K. Finally any one of the three methods in [7, Paper I, §5] may be used to
recover equations for C. In practice we use the Hesse pencil method, which by
virtue of the Hessian (7)) has a natural generalisation from 3-descent to 4-descent.
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Computing a Lower Bound for the Canonical
Height on Elliptic Curves over Totally Real
Number Fields
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Abstract. Computing a lower bound for the canonical height is a crucial
step in determining a Mordell-Weil basis of an elliptic curve. This paper
presents a new algorithm for computing such lower bound, which can
be applied to any elliptic curves over totally real number fields. The
algorithm is illustrated via some examples.

1 Introduction

Computing a lower bound for the canonical height is a crucial step in determining
a set of generators in Mordell-Weil basis (See [7] for full detail). To be precise,
the task of explicit computation of Mordell-Weil basis for E(K), where K is a
number field, consists of:

1. A 2-descent (or possibly higher m-descent) is used to determine Py, ..., P,
a basis for E(K)/2E(K) (or E(K)/mE(K) respectively).

2. A lower bound A > 0 for the canonical height h(P) is determined. This
together with the geometry of numbers yields an upper bound on the index
n of the subgroup of F(K) spanned by P,..., P;.

3. A sieving procedure is used to deduce a Mordell-Weil basis for E(K).

In Step 2, we certainly wish to have the index n as small as possible. In
particular, P, ..., Ps will certainly be a Mordell-Weil basis of E(K) if n < 2. It
then turns out that, in order to have a smaller index, we need to have a larger
value of the lower bound. This can be seen easily from the following theorem.

Theorem 1. Let E be an elliptic curve over K. Suppose that E(K) contains no

points P of infinite order with iz(P) < X for some A > 0. Suppose that Py, ..., Ps
generate a sublattice of E(K)/Fiors(K) of full rank s > 1. Then the index n of
the span of Py, ..., Ps in such sublattice satisfies

n < R(Pla ceey PS)I/Q('VS/)‘)S/Q s
where R(Pl, ey PS) = det((Ph Pj>)1§i,j§s and
1 4 ~ ~
(Pi, Pj) = o (h(Pi + Py) = h(P;) = h(Fy)) -

A.J. van der Poorten and A. Stein (Eds.): ANTS-VIII 2008, LNCS 5011, pp. 139 2008.
© Springer-Verlag Berlin Heidelberg 2008
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Moreover,
Mm=1 MB=4/3  ¥B=2 =4
7? = 8a ’Yg = 64/3a ’Y’; = 64a ’YS = 28a

and s = (4/7)(s/2 4+ 1)%/% for s > 9.
Proof. See [7l, Theorem 3.1]. 0

In the past, a number of explicit lower bounds for the canonical height on E(K)
have been proposed, including [6, Theorem 0.3]. Although this lower bound
has some good properties and is model-independent, it is rather not suitable
to computation. For K = Q, there is recently a better lower bound given by
Cremona and Siksek [5]. This paper is therefore a generalisation of their work.
In particular, we will focus on the case when K is a totally real number field.

This work is part of my forthcoming PhD thesis. I wish to thank my supervisor
Dr Samir Siksek for all his useful suggestions during the preparation of this paper.
I am also indebted to the Development and Promotion of Science and Technology
Talent Project (DPST), Ministry of Education of Thailand, for their sponsorship
and financial support for my postgraduate study.

1.1 Points of Good Reduction

Suppose K is a totally real number field of degree r = [K : Q]. Let E be an
elliptic curve defined over K with discriminant A. We define the map

¢:B(K)— [[ E(K,) ,
vES

with S = {oo1,...,00,} U{p : p | A}, in such a way that P is mapped into
its corresponding point on each real embedding E',..., E” (according as the
archimedean places 001, ..., 00, on K) and its corresponding point on each EW),
a minimal model of E at a non-archimedean place v. It is well-known that if K
has class number greater than 1, ' may not have a globally minimal model, i.e.
E®) may differ for different v.

Instead of working directly on F(K), the method we use is to determine a
lower bound g for the canonical height of non-torsion points on the subgroup

Eg(K)=¢"" (H Eé”(&)) ;

veS

where E(gv) (K,) is the connected component of the identity for archimedean v,
and the set of points of good reduction for non-archimedean v. In other words,
By (K) is the set of points of good reduction on every E()(K,).

Once p is determined, we can easily deduce the lower bound for the canonical
height on the whole E(K): let ¢ be the least common multiple of the Tamagawa
indices ¢, = [EW(K,) : E(gv) (K,)] (including at v = oo1,...,00,). This is
well-defined since ¢, = 1 for almost all places v. Then the lower bound for the
canonical height of all non-torsion points in E(K) is given by A\ = pu/c?.
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Remark 1. Let v be a non-archimedean place. Suppose F is given by a Weier-
strass equation with all coefficients in O, = {x € K : ord,(z) > 0}. Let A and
c4 be the constants as defined in Section 2l Then E is minimal at v if either
ord, (A) < 12, or ord,(cq) < 4.

2 Heights

Throughout this paper, we first define the usual constants of an elliptic curve
E: v’ +azy+asy =2+ asx® + asx + ag
with a1, a2, a3, a4, a6 € O, in the following way (See [8, p.46]):

bo :a§+4a2, by = 2a4 + aqa3,

be = a2 +4dag, bs = alag + 4asag — ajazas + aza3 — a3,
Cy = b% — 24by, cg = —bg + 36b2by — 216bg,

A = —b2bs — 8b% — 2702 + Ibababg .

Also let
f(P) = 4x(P)3+box(P)?+2bsx(P)+bs, g(P) = x(P)*—byx(P)*—2bsx(P)—bs,

so that z(2P) = g(P)/f(P).

In this paper, we use the definition of local and canonical heights as in [4],
which is analogous to the one in Cremona’s book [3]. This has the same normal-
isation as the one implemented in MAGMA package, so that both heights can
be compared directly. Note that normalisation of heights varies in literature. In
particular, our normalisation is twice the one used in Silverman’s paper [9].

Denote M the set of all places of K. For P € E(K), define the naive height
of P by

Hi(P)= ] max{Lla(P)l}™
vEME

where n, = [K, : Q,]. Observe that

Hi(2P) = ] max{|f(P)]..|g(P),}" .

vEM§K

The archimedean places oco1,009,...,00, correspond to the real embeddings
01,02, ...,0. : K — R, while all non-archimedean places are simply all prime
ideals p in Ok. For z € K and v € Mk, the absolute value of x at v is given by

2], = |oj ()] ifv=o00;,
! N(p)~—ode@)/me if y = p, a prime ideal ,

where N (p) is the norm of p. It is verified that this definition satisfies all axioms
of valuation theory and the product formula [] |z|?» = 1. From now on,
we shall denote |7|s, by |z|;.

vEMg
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The logarithmic height of P is then defined by
1
h(P) = . log Hg (P) .
With these definitions, it can be deduced that
1
h(2P) —4h(P) = Y n,log®,(P) ,
vEMg

where 1F(P)s l9(P)lo)
max vy |9 v .
2P =] max(1, (P} trP£0,
ifP=0 .

Using the definition of canonical height:

h(P) = lim h(2"P)

n—o00 4n ’

and the telescoping sum trick, we have

. 2
h(P) = h(P)+ [h(iP) — h(P)] + [h(izP) - h(iP)] +...= i Z NyAy (P)
vEM§K
where
Ay (P) = logmax{1,|z(P)|,} + Z logiﬂ . (1)

Such function A, : E(K,) — R is called the local height at v. This allows us to
obtain h(P) by combining the contribution of A, on each local model E(K,).

2.1 The Non-archimedean Local Heights

We shall first consider the properties of A, when v is non-archimedean (i.e.

v =7p).
For P € E(K), let P®) be its corresponding point (via the map ¢) on the

minimal model E®). Let \, be the local height associated to E, and A be

the local height associated to E). Assume that F is integral and E(") has
all coeflicients in O, we denote A and A®) the discriminants of E and E®)

respectively. These values are related by A = (u("))12 AP for some uP) € O,.
The following lemma illustrates the relation between A, and /\f,p)

Lemma 1

1
Mo (P) = N (PO) 4 log|4/4P),

Proof. See [4, Lemma 4]. |
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Now for P € Eg,(K), it follows that P®) € EP)(K,) at every prime ideal p. In

this case, we can easily compute )\gp)(P(p)) with the following lemma.

Lemma 2. Let p be a prime ideal and P®) € E(()p)(Kp) \{O} (i.e. P is a point
of good reduction). Then

AP (PP) = log max{1, [z(P®))],} .
Proof. This is a standard result. See, for example, in [J], Section 5]. O

Note that we may write the principal ideal (z:(P(®))) = AB~', where A, B are
coprime integral ideals. We call B the denominator ideal of ac(P(*’))7 denoted by
denom(z(P®)).

The next result is immediate from above lemmas and the definition of A(P).

Lemma 3. Suppose P € Eq(K)\ {O}. Then

~ 1 r 1
h(P) = . Z)\"OJ’ (P)+ L(P) — ¢ log N (Hpordp(A/A<p))> 7
Jj=1 o

where

L(P) = logN' H p—ords (z(P®)))
p|denom(z(P(®)))

Proof. From the definition of h(P), we have
- 1 IR
WP) = > nA(P) = . D Aoy (P) 4> npA(P) ] (2)
veEMg Jj=1 p
where ([2)) follows after we note that
Noo; = Koo, : Qo] =[R:R] =1, forj=1,...,7 .

From Lemma [Il we have
1
ST mpAe(P) = npAP (PP) + ; > nploga/A®y,
p p p

1
= Z”p log max{1, |33(P(p))‘p} + 6 an log \A/A(p)‘p - (3)
p p

The last equality follows from Lemma [2 since by assumption P € E, (K) (so
that P(®) ¢ Eép)(Kp) for all p). Now recall that

2(P®)], :N(p)—ordp(w(P(‘”))/np )
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Then for every p such that [x(P®)|, < 1, the term log{1, |z(P®))|,} will vanish.
Thus all p that yield a non-zero value to the first sum in (@] are ones such that
|z(P®)|, > 1, i.e. those which divide the denominator ideal of z(P®)). By
definition of absolute value and this fact, the first sum in (B]) becomes

an log max{1, |z(P®)],) = log N/ H pordn@(PP) | L(P).
p p|denom(z(P(®)))

Similarly, the second sum in (@) becomes

1 1 (»)
P — ord, (A/AWP))
6 E ny log|A/AW|, = 610g]\/'<||p v )

p p

Combining these two equalities with ([2]) yields the result. O

2.2 The Archimedean Local Height Difference

We now consider the archimedean local heights \,, i.e. when v = coq,...,00,.
For j=1,...,r, define
-3 .
a; " = 1an Do, (P) .
PEE}(R)
The exponent —3 is introduced to simplify expressions appearing later. These
aq,...,a, can be easily computed by method given in [7] with some adjustment.
The following lemma follows directly from the definition of local height.

Lemma 4. If P € E}(R)\ {O}, then
logmax{1,|z(P)|;} — Ao, (P) <logay .
Proof. Rearrange (Il) and use the fact that

o0 i 00 -3
Z log 91509]. (2'P) - Z log('aj )

4z+1 4z+1
=0 =0

= —loga; . a

3 Multiplication by n

In this section, we will derive a lower estimate for the contribution that multipli-
cation by n makes towards hA(nP). This will be useful later in the next section.
Let k, be the residue class field of p, and e, be the exponent of the group

E® (ky) 2= B (K,)/BP) (K,). Define

Dp(n)= Y 2(1+ordyy)(n/ep))logN(p)

p prime
ep|n

where ¢(p) is the characteristic of k,. Note that k, is a finite field, so c(p) is
always a prime number. In particular, N'(p) = |ky| < ¢(p)".
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Proposition 1. If e, | n, then N(p) < (n+ 1)} Hence Dg(n) is finite.
Moreover, if P is a non-torsion point in Eg(K) and n > 1, then

1 1 or )
h(nP) > ZAM (nP) + Dp(n) - 610gN<rp[p dvWA”)

Jj=1

Proof. Suppose e, | n. If E(®) has bad reduction at p, then e, is c¢(p), N(p) — 1,
or N(p) + 1 depending on whether E®) has additive, non-split multiplicative,
or split multiplicative reduction at p. In either case, this implies

n>e > NP -1,
and thus M (p) < (n+1)". Now for p at which E(®) has good reduction, we have
B (ky) = B¥) (ky) = Z)dr Z S L/ do .
where dy | dy and ds = ep,. Hence by Hasse’s theorem,
(VN(p) —1)? < |EP) (k)| = dida < €2 < n?

Thus N (p) < (n + 1)2. Putting this together yields NV (p) < (n + 1)max{2.r},
The second part follows directly from Lemma[3once we can show that L(nP) >

Dp(n). Toshow this, first note that P € Eg, (K ) implies P®) € E(gp) (Ky) for every

p. Define EF )( K,)={P¢€ E(p)(Kp) sordp(x(P)) < —2n}. Then it is known (see
[2, Lemma 7.3. 28]) that for alln > 1,

E®)(K,)/EX) (Ky) 2 ki = (Z)c(p)2)"

for some ¢ € Z*. Let e(p) = ord.(y)(n/ep). Then nP® ¢ E('(’))H(Kp)7 ie

ordy (denom(z(nP®)))) > 2(e(p) + 1) .

This implies that e, | n is equivalent to p | denom(x(nP®))). Hence

H N(p)fordp(w(nP(P))) > H N(p)Q(e(p)+1) )

p|denom(z(nP®))) p prime
epln

Taking logarithm both sides proves our claim. a

4 A Bound for Multiples of Points of Good Reduction

We now wish to show whether a given ;¢ > 0 satisfies fL(P) > p for all non-torsion
P € E4 (K). Suppose there exists a non-torsion P € Fg(K) with h(P) < p.
Then for each E7(R) we will obtain a sequence of inequalities satisfied by the
x-coordinates of the multiples nP, for n = 1,..., k. With suitable p and k,
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the system of inequalities on some E7(R) may have no solution, which implies
h(P) > p. In this section we will show how to derive such inequalities.
Let a; and Dp be defined as before. For > 0 and n € Z*, define

1
By () = exp | rn*p — Dg(n +Zloga] 6 log N/ (Hpordp(A/A(P))>
p

Proposition 2. If B,(u) < 1 then h(P) > p for all non-torsion points on
Eq.(K). On the other hand, if B, () > 1 then for all non-torsion points P €

By (K) with h(P) < p, we have
[z(nP)|; < Bn(p) ,
forallj=1,...)r

Proof. Suppose there exists a non-torsion point P € Eg (K) with fL(P) < p.
From Lemma @, we have

logmax{1, [z(nP)[;} — Ao, (nP) <logay ,
for all j = 1,...,r. This implies that
Zlogmax{l |z(nP)|;} < Z)\OOJ nP) +Zlogaj . (4)
Jj=1 j=1

By Proposition [[] and our assumption that E(P) < u, we have

ZAoog nP) (nP) Dg(n) + (13 log (H pordp(A/A("))>

p
1
< rnQ,u — Dp(n) + ; log N/ (H pordp(A/A(p))> . (5)
p

Combining (@) and (@) and taking exponential, we obtain

[ max{1, |z(nP)|;} < Bu(n) -

j=1

Clearly the left-hand side of this inequality is at least 1. Thus, if B, (1) < 1 we
simply obtain a contradiction, i.e. A(P) > u for every non-torsion P € Eg, (K).
On the other hand, by considering all different cases of |x(nP)|;, it is easy to
see that every case implies that |z(nP)|; < By(p) forall j=1,...,r. O

Corollary 1. Let q be a prime ideal such that

. 1/12
CI) > H a;/Q N (H pordp(A/A("))> ’ (6)
j=1 p
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and set n = eq and

_ 1 - 1 ord, (A/A®))
po=_ o | De(n) —;10540@' ~ 6 log (l;[P v

Then po > 0, and in particular, fl(P) > po for all non-torsion point P € Eq (K).

Proof. Suppose ¢ is a prime ideal satisfying (6). By definition of Dg(n), we have
" 1 or »
Dg(n) > 2logN(q) > ;logaj + 6 log N (E[p dp(A/A )) 7

which implies that pg > 0. Then for any p < po, we have

- 1 ord, (A/A®)
rnQN_DE(n)—i-j;logaj—i-Glog/\f (Hp dp (4/ )>

p

- 1
< rn*py — Dg(n) + Zlogaj ur log NV (Hpordp(ﬂ/A(”))> =0,
Jj=1 P

and thus B, (1) < 1. Hence h(P) > p for all non-torsion point P € Eg (K) by
Proposition 21 Since this is true for all u < po, then A(P) > ug as required. 0O

It is possible to derive a lower bound for any points on Eg.(K) by Corollary
[ alone. However, our practical experience shows that the bound derived from
this corollary itself is not as good as the bound obtained by collecting more
information on z(nP). This claim will be illustrated later in our examples.

5 Solving Inequalities Involving the Multiples of Points

From Proposition [ we know that every non-torsion point P € Eg (K) with

h(P) < p must satisfy |z(nP)|; < Bn(p) for all j = 1,...,r. This means that
we need to consider r elliptic curves over R, say

Bl y* 4 oj(ar)ry +oj(az)y = 2° + 0j(as)r? + o;(as)x + 0j(as) ,

for j =1,...,r. In other words, we need to consider o (nP) over E}(R). To prove
that h(P) > p for all non-torsion P € Fg, (K), we shall derive a contradiction
from these inequalities using an application of elliptic logarithm.

5.1 Elliptic Logarithm

An elliptic logarithm is an isomorphism ¢ : Ey(R) — R/Z = [0,1). This can be
rapidly computed by method of arithmetic-geometric means. In our program,
we use the algorithm in Cohen’s book [I, Algorithm 7.4.8] for this computation.
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We wish to apply elliptic logarithm to solving our inequalities on these r real
embeddings. For j =1,...,7, let

On E7:  fj(x) = 42® 4+ 0 (b2)2® + 20 (bs)x + 0(bs) -
Note that we can rewrite the Weierstrass equation of E7 as
fi(@) = 2y + 0j(ar)x + 0;(az))’

Denote 3; the largest real root of f;. On each E7, we define the corresponding
elliptic logarithm ¢; as follows: let

* dx
0;,=2 .
T V)
Then for a point P = (£,1) € EJ(R) with 25 + oj(a1)§ +oj(az) >0, we let
1 < dx
¢ (P) = ,
’ RiJe i)

otherwise, let ¢;(P) =1 — ¢;(—P).
Suppose that £ is a real number satisfying & > ;. Then there exists 7 such
that 2n + 0j(a1)§ + oj(as) > 0 and (§,7) € EJ(R). Define

¥i(€) = »;i((§m) € [1/2,1) .

In words, 1; (€) is the elliptic logarithm of the “higher” of the two points on
E}(R) with z-coordinate &. A
For real &1, & with & < &2, we define the subset 87 C [0,1) as follows:

, 0 if & < B3,
S7(€1,62) = § [1—¥i(82),15(&2)] if& <85 <&,
[T —5(&2), 1 — ()] U [¥;(&1),95(E2)]  if &1 > B -

The following lemma is clear.

Lemma 5. Suppose & < & are reql numbers. Then P € Eg(R) satisfies & <
z(P) < & if and only if ¢;(P) € §7 (&1, &2).

If [as, b;] is a disjoint union of intervals and ¢ € R, we define

t+ U[ai,bi] = U[ai +t,b; +t], tU[ai7bi] = U[tai,tbi] (for t> 0) .

Proposition 3. Suppose &1 < & are real numbers, and n > 0 is an integer. Let

S (&1,62) = 'Dl (t 15j(€17§2))

+
—0 n n

Then P € E}(R) satisfies € < x(nP) < & if and only 0;(P) € Si(&1,&).
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Proof. By Lemma[B, P € EJ(R) satisfies £, < 2:(P) < & if and only if o;(P) €
87(&1,&2). Denote the multiplication-by-n map on R/Z by v,,. If § € [0,1), then

an(é):{t +6 :t:0,172,...,n—1}
n n

But since ¢; is an isomorphism, we have ¢;(nP) = nyp;(P) (mod 1). Hence

@;(nP) € 8 (&1,6) < ¢;(P) € v, (8 (&1,6)) = S)(&1, &) - O

6 The Algorithm

Combining all results we have so far, we obtain our main theorem.

Theorem 2. Given pu > 0. If By(p) < 1 for some n € Z+, then h(P) > p for
every non-torsion point P € Eqg(K). Otherwise, if Bp(u) > 1 form=1,... k,
then every non-torsion point P € Eq.(K) such that h(P) < p satisfies

k

n=1

for all j =1,...,7. In particular, if one of above r intersections is empty, then
h(P) > p for all non-torsion P € Eg (K).

To use the algorithm, first we give an initial lower bound g and the number of
steps k. In practice, we find that the initial choice of y =1 and k = 5 is useful.

We start by computing B, () for n = 1,...,k. If B,(u) < 1 for some n,
then we deduce that h(P) > p for every non-torsion P € Eq (K). Otherwise, we
compute ﬂi:l S} (=Bn(p), Bu(p)) for j = 1,...,r. If the intersection is empty
for some j, then again h(P) > u for every non-torsion P € Eg, (K). However, if
none of r intersections is empty, we fail to show that u is a lower bound.

We can refine p further until a sufficient accuracy is achieved: if 14 is shown to
be a lower bound, we increase p by some factor, say, 1.1. Otherwise, we decrease
w1 and increase k, say, by multiplying p by 0.9 and increasing k£ by 1. Then we
repeat the above with new p (and possibly new k).

Finally, we return the last value of 1 which is known to be a lower bound.

7 Remark

Unlike [6], our lower bound is not model-independent. For example, the values a;
defined in Section [Z.2l depend on ba, by, bg, and bg. Thus we may obtain different
values of lower bound if we work with different models of E. At this point, we are
however not to decide which model of F maximises the lower bound. Moreover,
our formulae can be simplified if F is a globally minimal model. Note that this
may not be the case if F is defined over a field K of class number at least 2.
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8 Examples
We have implemented our algorithm in MAGMA to illustrate some examples.
Ezample 1. Consider the elliptic curve E over K = Q(1/2) given by
E: y?’=flx)=2+z+(1+2V2) .
The discriminant A of E is —3952 — 1728v/2. Moreover, (A) = p§p2p,, where
p1=(V2), p2={(7,34+V2), p3=(769,636+V2) .

Hence by Remark [I, £ is minimal at every prime ideal, and thus it is globally
minimal. Our program shows that for any non-torsion point P € Eg, (K),

h(P) > 0.2415 .

This is obtained after a number of refinements as shown in Table[T]

Table 1. Illustration of algorithm for Example 1

Initial Initial Is any Is any intersection Ispa Next Next

I k  Bn(p) <17 empty? lower bound? g k
1.0000 5 No No Fail 0.5000 6
0.5000 6 No No Fail 0.2500 7
0.2500 7 No No Fail 0.1250 8
0.1250 8 Yes Skipped Yes 0.1875 8
0.1875 8 No Yes Yes 0.2187 8
0.2187 8 No Yes Yes 0.2343 8
0.2343 8 No Yes Yes 0.2421 8
0.2421 8 No No Fail 0.2382 9
0.2382 9 No Yes Yes 0.2402 9
0.2402 9 No Yes Yes 0.2412 9
0.2412 9 No Yes Yes 0.2416 9
0.2416 9 No No Fail 0.2414 10
0.2414 10 No Yes Yes 0.2415 10
0.2415 10 No No Fail 0.2415 11
0.2415 11 No Yes Yes

On the other hand, the lower bound for Eg, (K) derived from Corollary [ is
not as good as this one. In this example, we have

a1 = 1.096562, s = 1.001830 ,

which gives ajas = 1.098569 We now choose a prime ideal p whose norm is
greater than /ajas, and set n = e,. To minimise n, we choose p = (v/2) to get
n = e, = 2. Then we have D (2) = 1.386294 and finally

110 = (1.386294 — log(1.098569)) /8 = 0.1615 .
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The Tamagawa indices at pi,ps2,p3 are 4, 2, and 1 respectively. Moreover,
since o1(f) and o2(f) both have one real root, we have ¢o, = ¢, = 1. Hence
¢ =4, and thus for any non-torsion point P € E(K),

h(P) > 0.2415/16 = 0.0150 .

It can be checked that the torsion subgroup of E(K) is trivial, and the point
P = (1,1++/2) € BE(K). Using MAGMA, we know that h(P) = 0.5033, and the
rank of E(K) is at most 1. Hence E(K) has rank 1. By Theorem [Il we obtain

n=[E(K): (P)] < 1/0.5033/0.0150 = 5.7739 .
Ezample 2. Consider the elliptic curve E over K = Q(+/7) defined by
E: 4+ 6B+3VNay+y=flx)=2>+ (26 +4V7)2> + = .
The discriminant A of E is —937513—299394+/7. Moreover, (A) = pipap3, where
p1 = (4210,1083 + V7), p2 = (4657,3544+V/7), ps = (12799, 5358 + V/7) .

Hence by Remark [[I F is minimal at every prime ideal p, so it is a globally
minimal model. Our program shows that for any non-torsion point P € Eg4.(K),

h(P) > 0.1415 .

The Tamagawa indices at pi,ps2,ps are all 1. Also coo, = Coo, = 2 since
both o1 (f) and o2(f) have 3 real roots. Hence ¢ = 2. Then for any non-torsion
P € E(K), we have

h(P) > 0.1415/4 = 0.0353 .

In this example, the torsion subgroup of E(K) is trivial. Let P, = (0,0) and
Py = (1,4/7). It can be verified that both points are on E(K), and

h(Py) = 0.8051, h(Py)=1.4957 .

Hence by computing the height pairing matrix, we have

_ (P1,P1) (P, P)\ _ | 0.8051—0.1941| _
R(P, ) _det<<P2,P1) (P Py) ) ~ | 01941 1.4957| = 1166570

Therefore P; and P, are independent. From MAGMA, we know that the rank of
E(K) is at most 2. Hence E(K) has rank 2. By Theorem [I we finally obtain

(v/1.1665)(2/+/3)

n=[E(K): (P, P)] < 0.0353

= 35.2450 .

Ezample 3. Let E be the elliptic curve over K = Q(1/10) given by

E: y*=f(x)=2+125.
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Note that K has class number 2. By decomposing the discriminant A of FE, it
can be seen that (A) = (—213356) = p2p3p3pd, where

p1 = (5,V10), po=(3,44+V10), ps=(3,2+V10), ps=(2,V10) .

By calculating the constant c4 of E, we have ¢4 = 0 and so ord,(cs) = oo £ 4.
Hence by Remark [l E is minimal everywhere except at p1. By substituting

= (V10)%, y=(V10)3y,

we have a new elliptic curve E' : 3> = 2/ 4 1/8. Now E’ is minimal at p; and

elsewhere, except at all prime ideals dividing 2. Thus we let E®1) = E’ and
E®) = E for any p # p; in our computation. Our program shows that

h(P) > 0.2859 |

for every non-torsion P € Fg4 (K).

The Tamagawa indices at p1, po, 3, pq are 1, 2, 2, and 1 respectively. Moreover,
o1(f) and o2(f) both have only one real root, S0 oo, = Coo, = 1. Thus ¢ = 2,
and hence for any non-torsion point P € E(K), we have

h(P) > 0.2859/(2%) = 0.0714 .

It can be checked that the point P = (5,5/10) € E(K). From MAGMA, we
know that h(P) = 0.6532, and the rank of E(K) is at most 1. Hence E(K) must
have rank 1. Finally by Theorem [II, we have

n=[E(K): (P)] < /0.6532/0.0714 = 3.0229 .
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Abstract. In this paper, we discuss an implementation of various algo-
rithms for multiplying polynomials in GF(2)[z]: variants of the window
methods, Karatsuba’s, Toom-Cook’s, Schénhage’s and Cantor’s algo-
rithms. For most of them, we propose improvements that lead to practical
speedups.

Introduction

The arithmetic of polynomials over a finite field plays a central role in algorithmic
number theory. In particular, the multiplication of polynomials over GF(2) has
received much attention in the literature, both in hardware and software. It
is indeed a key operation for cryptographic applications [22], for polynomial
factorisation or irreducibility tests [8[]. Some applications are less known, for
example in integer factorisation, where multiplication in GF(2)[z] can speed up
Berlekamp-Massey’s algorithm inside the (block) Wiedemann algorithm [20][].

We focus here on the classical dense representation — called “binary polyno-
mial” — where a polynomial of degree n — 1 is represented by the bit-sequence
of its n coefficients. We also focus on software implementations, using classical
instructions provided by modern processors, for example in the C language.

Several authors already made significant contributions to this subject. Apart
from the classical O(n?) algorithm, and Karatsuba’s algorithm which readily
extends to GF(2)[z], Schonhage in 1977 and Cantor in 1989 proposed algorithms
of complexity O(nlognloglogn) and O(n(logn)'-5849-+) respectively [I8,4]. In
[16], Montgomery invented Karatsuba-like formulee splitting the inputs into more
than two parts; the key feature of those formulz is that they involve no division,
thus work over any field. More recently, Bodrato [2] proposed good schemes
for Toom-Cook 3, 4, and 5, which are useful cases of the Toom-Cook class of
algorithms [72T]. A detailed bibliography on multiplication and factorisation in
GF(2)[z] can be found in [9].

Discussions on implementation issues are found in some textbooks such as
[6I12]. On the software side, von zur Gathen and Gerhard [9] designed a software
tool called BiPolAr, and managed to factor polynomials of degree up to 1 000 000,
but BiPolAr no longer seems to exist. The reference implementation for the last
decade is the NTL library designed by Victor Shoup [19].

A.J. van der Poorten and A. Stein (Eds.): ANTS-VIII 2008, LNCS 5011, pp. 153 2008.
© Springer-Verlag Berlin Heidelberg 2008
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The contributions of this paper are the following: (a) the “double-table” algo-
rithm for the word-by-word multiplication and its extension to two words using
the SSE-2 instruction set (§II); (b) the “word-aligned” variants of the Toom-Cook
algorithm (§2)); (c) a new view of Cantor’s algorithm, showing in particular that
a larger base field can be used, together with a truncated variant avoiding the
“staircase effect” (§8.1); (d) a variant of Schénhage’s algorithm (§32)) and a
splitting technique to improve it (§33)); (e) finally a detailed comparison of our
implementation with previous literature and current software ().

Notation: w denotes the machine word size (usually w = 32 or 64), and we con-
sider polynomials in GF(2)[z]. A polynomial of degree less than d is represented
by a sequence of d bits, which are stored in [d/w] consecutive words.

The code that we developed for this paper, and for the paper [3], is contained
in the GF2X package, available under the GNU General Public License from
http://wwwmaths.anu.edu.au/~brent/gf2x.html.

1 The Base Case (Small Degree)

We first focus on the “base case”, that is, routines that multiply full words (32,
64 or 128 bits). Such routines eventually act as building blocks for algorithms
dealing with larger degrees. Since modern processors do not provide suitable
hardware primitives, one has to implement them in software.

Note that the treatment of “small degree” in general has also to deal with
sizes which are not multiples of the machine word size: what is the best strategy
to multiply, e.g., 140-bit polynomials? This case is not handled here.

1.1 Word by Word Multiplication (mull)

Multiplication of two polynomials a(x) and b(x) of degree at most w — 1 can be
performed efficiently with a “window” method, similar to base-2° exponentiation,
where the constant s denotes the window size. This algorithm was found in
version 5.1a of NTL, which used s = 2, and is here generalized to any value of s:

1. Store in a table the multiples of b by all 2° polynomials of degree < s.
2. Scan bits of a, s at a time. The corresponding table data are shifted and
accumulated in the result.

Note that Step 1 discards the high coefficients of b(x), which is of course unde-
sired], if b(z) has degree w — 1. The computation must eventually be “repaired”
with additional steps which are performed at the end.

The “repair step” (Step 3) exploits the following observation. Whenever bit
w—j of bis set (where 0 < j < s), then bits at position j’ of a, where j' mod s >
j, contribute to a missing bit at position w + 7' — j in the product. Therefore
only the high result word has to be fixed. Moreover, for each j, 0 < j < s,

! The multiples of b are stored in one word, i.e., modulo 2¥; alternatively, one could
store them in two words, but that would be much slower.
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the fixing can be performed by an exclusive-or involving values easily derived
from a: selecting bits at indices j' with j' mod s > j can be done inductively by
successive shifts of a, masked with an appropriate value.

mull (ulong a, ulong b)
multiplies polynomials a and b. The result goes in 1 (low part) and h (high part).
ulong ul[2°] = { 0, b, 0, ... }; /* Step 1 (tabulate) */
for(int i =2 ; 1 < 2° ; i += 2)
uli] uli > 1] << 1; uli + 1] = ul[i] ~ b;
ulong g = ula & (2°—-1)], 1 = g, h = 0;
for(int i = s ; i < w ; i += s)
g=ula>»>i& (2°-1)]; 1 "= g<<i; h "=g> (w-1i);
ulong m = (2° —2) x (1+2°+2% +2% +...) mod 2¥; /* Step 3 (repair) */
for(int j =1 ; j < s ; j++)
a=(a<<1) & m
if (bitw—j of bis set) h "= a;
return 1, h;

/* Step 2 (multiply) */

Fig. 1. Word-by-word multiplication with repair steps

The pseudo-code in Fig. [0 illustrates the word-by-word multiplication algo-
rithm (in practice s and w will be fixed for a given processor, thus the for-loops
will be replaced by sequences of instructions). There are many alternatives for
organizing the operations. For example, Step 1 can also be performed with a
Gray code walk. In Step 2, the bits of a may be scanned either from right to
left, or in reverse order. For an efficient implementation, the if statement within
Step 3 should be replaced by a masking operation to avoid branchinég:

h "= a & -(((Qong) (b << (j-1))) < 0);

A non trivial improvement of the repair steps comes from the observation
that Steps 2 and 3 of Fig. [l operate associatively on the result registers 1 and
h. The two steps can therefore be swapped. Going further, Step 1 and the repair
steps are independent. Interleaving of the code lines is therefore possible and
has actually been found to yield a small speed improvement. The GF2X package
includes an example of such an interleaved code.

The double-table algorithm. In the mull algorithm above, the choice of the win-
dow size s is subject to some trade-off. Step 1 should not be expanded unrea-
sonably, since it costs 2%, both in code size and memory footprint. It is possible,
without modifying Step 1, to operate as if the window size were 2s instead of s.
Within Step 2, replace the computation of the temporary variable g by:

2 In the C language, the expression (z < 0) is translated into the setb x86 assem-
bly instruction, or some similar instruction on other architectures, which does not
perform any branching.
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g=ula> i& (2°-1)] ~ ula > (G+s) & (2°—1)] << s

so that the table is used twice to extract 2s bits (the index i thus increases by
2s at each loop). Step 1 is faster, but Step 2 is noticeably more expensive than
if a window size of 2s were effectively used.

A more meaningful comparison can be made with window size s: there is no
difference in Step 1. A detailed operation count for Step 2, counting loads as
well as bitwise operations &, ~, <<, and >> yields 7 operations for every s bits
of inputs for the code of Fig. [, compared to 12 operations for every 2s bits
of input for the “double-table” variant. A tiny improvement of 2 operations for
every 2s bits of input is thus obtained. On the other hand, the “double-table”
variant has more expensive repair steps. It is therefore reasonable to expect that
this variant is worthwhile only when s is small, which is what has been observed
experimentally (an example cut-off value being s = 4).

1.2 Extending to a mul2 Algorithm

Modern processors can operate on wider types, for instance 128-bit registers are
accessible with the SSE-2 instruction set on the Pentium 4 and Athlon 64 CPUs.
However, not all operations are possible on these wide types. In particular, arith-
metic shifts by arbitrary values are not supported on the full 128-bit registers
with SSE-2. This precludes a direct adaptation of our mull routine to a mul?2
routine (at least with the SSE-2 instruction set). We discuss here how to work
around this difficulty in order to provide an efficient mul2 routine.

To start with, the algorithm above can be extended in a straightforward way
so as to perform a kx 1 multiplication (k words by one word). Step 1 is unaffected
by this change, since it depends only on the second operand. In particular, a 2x 1
multiplication can be obtained in this manner.

Following this, a 2 x 2 mul2 multiplication is no more than two 2 x 1 mul-
tiplications, where only the second operand changes. In other words, those two
multiplications can be performed in a “single-instruction, multiple-data” (SIMD)
manner, which corresponds well to the spirit of the instruction set extensions
introducing wider types. In practice, a 128-bit wide data type is regarded as a
vector containing two 64-bit machine words. Two 2 x 1 multiplications are per-
formed in parallel using an exact translation of the code in Fig. [[l The choice
of splitting the wide register into two parts is fortunate in that all the required
instructions are supported by the SSE-2 instruction set.

1.3 Larger Base Case

To multiply two binary polynomials of n words for small n, it makes sense to
write some special code for each value of n, as in the NTL library, which contains
hard-coded Karatsuba routines for 2 < n < 8 [1922]. We wrote such hard-coded
routines for 3 < n <9, based on the above mull and mul2 routines.
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2 Medium Degree

For medium degrees, a generic implementation of Karatsuba’s or Toom-Cook’s
algorithm has to be used. By “generic” we mean that the number n of words of
the input polynomials is an argument of the corresponding routine. This section
shows how to use Toom-Cook without any extension field, then discusses the
word-aligned variant, and concludes with the unbalanced variant.

2.1 Toom-Cook without Extension Field

A common misbelief is that Toom-Cook’s algorithm cannot be used to multiply
binary polynomials, because Toom-Cook 3 (TC3) requires 5 evaluation points,
and we have only 3, with both elements of GF(2) and co. In fact, any power of the
transcendental variable z can be used as evaluation point. For example TC3 can
use 0,1, 00,2, z~". This was discovered by Michel Quercia and the last author
a few years ago, and implemented in the irred-ntl patch for NTL [23]. This
idea was then generalized by Bodrato [2] to any polynomial in ; in particular
Bodrato shows it is preferable to choose 0,1, 00, z,1 + x for TC3.

A small drawback of using polynomials in z as evaluation points is that
the degrees of the recursive calls increase slightly. For example, with points
0,1,00,z, 2~ to multiply two polynomials of degree less than 3n by TC3, the
evaluations at z and z~! might have up to n + 2 non-zero coefficients. In any
case, this will increase the size of the recursive calls by at most one word.

For Toom-Cook 3-way, we use Bodrato’s code; and for Toom-Cook 4-way, we
use a code originally written by Marco Bodrato, which we helped to debug.

2.2 Word-Aligned Variants

In the classical Toom-Cook setting over the integers, one usually chooses 0, 1, 2,
1/2, oo for TC3. The word-aligned variant uses 0, 1, 2%, 27% oo, where w is the
word-size in bits. This idea was used by Michel Quercia in his numerix libraryﬁ,
and was independently rediscovered by David Harvey [13]. The advantage is that
no shifts have to be performed in the evaluation and interpolation phases, at the
expense of a few extra words in the recursive calls.

The same idea can be used for binary polynomials, simply replacing 2 by x.
Our implementation TC3W uses 0, 1, 2%, 7%, 0o as evaluation points (Fig. 2]).
Here again, there is a slight increase in size compared to using  and 2 ~': poly-
nomials of 3n words will yield two recursive calls of n+ 2 words for % and 2=,
instead of n+ 1 words for  and z~'. The interpolation phase requires two exact
divisions by " + 1, which can be performed very efficiently.

2.3 Unbalanced Variants

When using the Toom-Cook idea to multiply polynomials a(x) and b(z), it is
not necessary to assume that dega = degb. We only need to evaluate a(x) and

3http://bodrato.it/toom-cook/binary/
4http://pauillac.inria.fr/~quercia/cdrom/bibs/}, version 0.21a, March 2005.
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TC3W (a, b)
Multiplies polynomials A = a2X? + a1 X + ao and B = b2 X? + b1 X + by in GF(2)[x]
Let W =2z" (assume X is a power of W for efficiency).
co — a1 W 4+ aaW?, ¢4 — bW +b2W?, ¢5 — ao+ a1 +as, ca < bo+ b1 + by
€1+ C2 X C5, C5C5 +Co, Co 4 C2+Cq, Co< Co+ Qo
Cq4 < Cq4+ by, c3 o XcC5, CoCoXca, Co— ap X bgy
cy ——az Xba, cg—c3+ca, ca—catco, c2—co/WHes
c2— (ca+ (1 +W3es)/(L+W), c1 «—c14co, c3—cz+ar
cs —c3/(W*+ W), ci—c1+catca, caecatcs
Return ca X* + s X® + e X? + 1 X +co.

Fig. 2. Word-aligned Toom-Cook 3-way variant (all divisions are exact)

b(z) at dega + degb + 1 points in order to be able to reconstruct the product
a(x)b(x). This is pointed out by Bodrato [2], who gives (amongst others) the case
dega = 3, degb = 1. This case is of particular interest because in sub-quadratic
polynomial GCD algorithms, of interest for fast polynomial factorisation [3L17],
it often happens that we need to multiply polynomials a and b where the size of
a is about twice the size of b.

We have implemented a word-aligned version TC3U of this case, using the
same evaluation points 0, 1, %, z=%, oo as for TC3W, and following the algo-
rithm given in [2 p. 125]. If @ has size 4n words and b has size 2n words, then
one call to TC3U reduces the multiplication a x b to 5 multiplications of poly-
nomials of size n+ O(1). In contrast, two applications of Karatsuba’s algorithm
would require 6 such multiplications, so for large n we expect a speedup of about
17% over the use of Karatsuba’s algorithm.

3 Large Degrees

In this section we discuss two efficient algorithms for large degrees, due to Cantor
and Schonhage [4,[18]. A third approach would be to use segmentation, also
known as Kronecker-Schonhage’s trick, but it is not competitive in our context.

3.1 Cantor’s Algorithm

Overview of the Algorithm. Cantor’s algorithm provides an efficient method
to compute with polynomials over finite fields of the form Fj = GF(QQk). Can-
tor proposes to perform a polynomial multiplication in Fj[z] using an evalua-
tion/interpolation strategy. The set of evaluation points is carefully chosen to
form an additive subgroup of Fj. The reason for the good complexity of Can-
tor’s algorithm is that polynomials whose roots form an additive subgroup are
sparse: only the monomials whose degree is a power of 2 can occur. Therefore
it is possible to build a subproduct tree, where each internal node corresponds
to a translate of an additive subgroup of Fj, and the cost of going up and down
the tree will be almost linear due to sparsity.
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We refer to [LI8] for a detailed description of the algorithm, but we give a
description of the subproduct tree, since this is useful for explaining our im-
provements. Let us define a sequence of polynomials s;(x) over GF(2) as follows:

so(x) ==, and for all i >0, s;11(x) = s4(x)? + s4(x).

The s; are linearized polynomials of degree 2¢, and for all i, s;(x) | s;41(2).
Furthermore, one can show that for all k, sor () is equal to 2% +x, whose roots
are exactly the elements of F}. Therefore, for 0 < i < 2’“, the set of roots of s;
is a subvector-space W; of F} of dimension ¢. For multiplying two polynomials
whose product has a degree less than 2%, it is enough to evaluate/interpolate
at the elements of W;, that is to work modulo s;(x). Therefore the root node
of the subproduct tree is s;(z). Its child nodes are s;_i(z) and s;—1(z) + 1
whose product gives s;(z). More generally, a node s;(x) + « is the product of
sj—1(x)+a’ and sj_1(z)+a’+1, where o/ verifies @/ 4o’ = a. For instance, the
following diagram shows the subproduct tree for s3(x), where (1 = 31, B2, 3) are
elements of Fj, that form a basis of W3. Hence the leaves correspond exactly to
the elements of W3. In this example, we have to assume k > 2, so that §; € Fy.

83(1):m8+w4+w2+w

/
so(x) =zt + so(z) +1
si(z) =2° +x si(z) +1 s1(z) + B2 si(z)+ B2+ 1
/7 '\ N N VN
z+0 x+1 x + B2 r+ B2+ 1 z + (3 z+ 0Oz +1 z + B3 + B2 z+ B3+ P2+1

Let ¢j bethenumber of non-zero coefficients of s ; (). The cost of evaluating a polyno-
mial at all the points of W is then O(2" Y- _, ¢;) operations in Fj,. The interpolation
step hasidentical complexity. The numbers c; arelinked to the numbers of odd bino-
mial coefficients, and one can show that C; = Y77 _, ¢; is O(i'°%2(3)) = O(i1-5849-).

Putting this together, one gets a complexity of O(n(log n)!-584%-+)

operationsin F},
for multiplying polynomials of degree n < 22" with coefficients in F} k-

In order to multiply arbitrary degree polynomials over GF(2), it is possible to
clump the input polynomials into polynomials over an appropriate Fj, so that the
previous algorithm can be applied. Let a(z) and b(x) be polynomials over GF(2)
whose product has degree less than n. Let k be an integer such that gk—192" >n.
Then one can build a polynomial A(z) = > A;x% over F},, where A; is obtained
by taking the i-th block of 2¥~! coefficients in a(z). Similarly, one constructs a
polynomial B(z) from the bits of b(x). Then the product a(z)b(x) in GF(2)[z] can
be read from the product A(z)B(z) in Fj[z], since the result coefficients do not
wrap around (in Fj). This strategy produces a general multiplication algorithm
for polynomials in GF(2)[z] with a bit-complexity of O(n(logn)!-5849-+).

Using a Larger Base Field. When multiplying binary polynomials, a natural
choice for the finite field Fy, is to take k as small as possible. For instance, in [§],
the cases k = 4 and k = 5 are considered. The case k = 4 is limited to computing
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a product of 2! bits, and the case k = 5 is limited to 2% bits, that is 8 GB (not
a big concern for the moment). The authors of [8] remarked experimentally that
their £ = 5 implementation was almost as fast as their & = 4 implementation
for inputs such that both methods were available.

This behaviour can be explained by analyzing the different costs involved
when using Fj, or Fj41 for doing the same operation. Let M; (resp. A;) denote
the number of field multiplications (resp. additions) in one multipoint evaluation
phase of Cantor’s algorithm when 2¢ points are used. Then M; and A; verify

Mi = (2 — 1)2i_17 and Az = Qi_lC'i_l.

Using Fj+1 allows chunks that are twice as large as when using FJ, so that the
degrees of the polynomials considered when working with Fj,, are twice as small
as those involved when working with Fj. Therefore one has to compare M;my,
with M;_1my41 and A;a with A;_jag4+1, where my (resp. ay) is the cost of a
multiplication (resp. an addition) in F.

Since A; is superlinear and ay, is linear (in 2¢ resp. in 2¥), if we consider only
additions, there is a clear gain in using Fj, 1 instead of Fj. As for multiplications,
an asymptotical analysis, based on a recursive use of Cantor’s algorithm, leads
to choosing the smallest possible value of k. However, as long as 2¥ does not
exceed the machine word size, the cost my should grow roughly linearly with
2% In practice, since we are using the 128-bit multimedia instruction sets, up to
k =17, the growth of my, is more than balanced by the decay of M;.

In the following table, we give some data for computing a product of N =
16 384 bits and a product of N = 524 288 bits. For each choice of k, we give the
cost my, (in Intel Core2 CPU cycles) of a multiplication in Fj, with the mpF,
library [I1]. Then we give A; and M; for the corresponding value of i required
to perform the product.

N = 16384 N = 524288
k 2% my (in cycles) i M; A, 1 M, A;
4 16 32 1110240 26624 16 491 520 2129920
5 32 40 10 4608 11776 15229376 819200
6 64 77 9 2048 5120 14106496 352256
7128 157 8 896 2432 13 49152 147456

The Truncated Cantor Transform. In its plain version, Cantor’s algorithm
has a big granularity: the curve of its running time is a staircase, with a big
jump at inputs whose sizes are powers of 2. In [8], a solution is proposed (based
on some unpublished work by Reischert): for each integer ¢ > 1 one can get a
variant of Cantor’s algorithm that evaluates the inputs modulo z‘ — «, for all
in a set W;. The transformations are similar to the ones in Cantor’s algorithm,
and the pointwise multiplications are handled with Karatsuba’s algorithm. For
a given £, the curve of the running time is again a staircase, but the jumps are
at different positions for each ¢. Therefore, for a given size, it is better to choose
an ¢, such that we are close to (and less than) a jump.
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We have designed another approach to smooth the running time curve. This
is an adaptation of van der Hoeven’s truncated Fourier transform [I4]. Van der
Hoeven describes his technique at the butterfly level. Instead, we take the general
idea, and restate it using polynomial language.

Let n be the degree of the polynomial over F} that we want to compute.
Assuming n is not a power of 2, let i be such that 2! < n < 2¢. The idea
of the truncated transform is to evaluate the two input polynomials at just the
required number of points of W;: as in [14], we choose to evaluate at the n points
that correspond to the n left-most leaves in the subproduct tree. Let us consider
the polynomial P, (x) of degree n whose roots are exactly those n points. Clearly
P, (x) divides s;(x). Furthermore, due to the fact that we consider the left-most
n leaves, P, (z) can be written as a product of at most ¢ polynomials of the form
sj(z) + «, following the binary expansion of the integer n: P, = ¢;—1Gi—2 - - - qo,
where g; is either 1 or a polynomial s;(z) + « of degree 27, for some « in Fj.

The multi-evaluation step is easily adapted to take advantage of the fact that
only n points are wanted: when going down the tree, if the subtree under the
right child of some node contains only leaves of index > n, then the computation
modulo the corresponding subtree is skipped. The next step of Cantor’s algo-
rithm is the pointwise multiplication of the two input polynomials evaluated at
points of W;. Again this is trivially adapted, since we have just to restrict it to
the first n points of evaluation. Then comes the interpolation step. This is the
tricky part, just like the inverse truncated Fourier transform in van der Hoeven’s
algorithm. We do it in two steps:

1. Assuming that all the values at the 2/ — n ignored points are 0, do the same
interpolation computation as in Cantor’s algorithm. Denote the result by f.
2. Correct the resulting polynomial by reducing f modulo P,.

In step 1, a polynomial f with 2¢ coefficients is computed. By construction,
this f is congruent to the polynomial we seek modulo P, and congruent to 0
modulo s;/P,. Therefore, in step 2, the polynomial f of degree 2¢ — 1 (or less)
is reduced modulo P, in order to get the output of degree n — 1 (or less).

Step 1 is easy: as in the multi-evaluation step, we skip the computations that
involve zeros. Step 2 is more complicated: we can not really compute P, and
reduce f modulo P, in a naive way, since P, is (a priori) a dense polynomial over
Fj. But using the decomposition of P, as a product of the sparse polynomials
qj, we can compute the remainder within the appropriate complexity.

3.2 Schonhage’s Algorithm

Fig. Bl describes our implementation of Schénhage’s algorithm [I8] for the mul-
tiplication of binary polynomials. It slightly differs from the original algorithm,
which was designed to be applied recursively; in our experiments — up to de-
gree 30 million — we found out that TC4 was more efficient for the recursive
calls. More precisely, Schonhage’s original algorithm reduces a product modulo
22N 4+ 2NV + 1 to 2K products modulo 22* 4 & + 1, where K is a power of 3,
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FFTMul(a, b, N, K) Assumes K = 3%, and K divides N.
Multiplies polynomials a and b modulo ™ + 1, with a transform of length K.

1. Let N=KM, and write aZfiBl aixiM, where dega; < M (idem for b)
Let L be the smallest multiple of K/3 larger or equal to M

Consider a;,b; in R := GF(2)[x]/(z** + 2" 4+ 1), and let w = 23!
Compute a; = Zf:_ol wijaj in R for 0 <i< K (idem for b)

Compute ¢ = ab; in R for 0<i< K

Compute ¢y = ZZK:Bl w in R for 0< U< K

Return ¢ =Y, ' cet™.

€R

~N oo W N

Fig. 3. Our variant of Schonhage’s algorithm

L > N/K, and N, L are multiples of K. If one replaces N and K respectively
by 3N and 3K in Fig.[B our variant reduces one product modulo 23" +1 to 3K
products modulo z2% + z% + 1, with the same constraints on K and L.

A few practical remarks about this algorithm and its implementation: the
forward and backward transforms (steps 4 and 6) use a fast algorithm with
O(K log K) arithmetic operations in R. In the backward transform (step 6), we
use the fact that w® =1 in R, thus w™% = w= ¥ mod K Tt is crucial to have an
efficient arithmetic in R, i.e., modulo 22* 4 z¥ + 1. The required operations are
multiplication by 2/ with 0 < j < 3L in steps 4 and 6, and plain multiplication
in step 5. A major difference from Schonhage-Strassen’s algorithm (SSA) for
integer multiplication is that here K is a power of three instead of a power of
two. In SSA, the analog of R is the ring of integers modulo 2% +1, with L divisible
by K = 2F. As a consequence, in SSA one usually takes L to be a multiple of the
numbers of bits per word — usually 32 or 64 —, which simplifies the arithmetic
modulo 2% +1 [10]. However assuming L is a multiple of 32 or 64 here, in addition
to being a multiple of K/3 = 3!, would lead to huge values of L, hence an
inefficient implementation. Therefore the arithmetic modulo 2% + 2z + 1 may
not impose any constraint on L, which makes it tricky to implement.

Following [10], we can define the efficiency of the transform by the ratio
M/L < 1. The highest this ratio is, the more efficient the algorithm is. As an
example, to multiply polynomials of degree less than r = 6972593, one can
take N = 13948686 = 2126K with K = 6561 = 3%. The value of N is only
0.025% larger than the maximal product degree 2r — 2, which is close to optimal.
The corresponding value of L is 2187, which gives an efficiency M /L of about
97%. One thus has to compute K = 6561 products modulo z*37 + 22187 41,
corresponding to polynomials of 69 words on a 64-bit processor.

3.3 The Splitting Approach to FFT Multiplication

Due to the constraints on the possible values of N in Algorithm FFTMul, the
running time (as a function of the degree of the product ab) follows a “stair-
case”. Thus, it is often worthwhile to split a multiplication into two smaller
multiplications and then reconstruct the product.
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FFTReconstruct(c’, ¢”, N, N/, N/)
Reconstructs the product c of length N from wrapped products ¢’ of length N' and

1

¢’ of length N”, assuming N' > N” > N/2. The result overwrites c .
1. §:=N' —N"
2. For i:= N — N’ —1 downto 0 do
{ciynr = Cips ®cliss cii=ci @i}
3. Return c:=¢

Fig. 4. Reconstructing the product with the splitting approach

More precisely, choose N’ > N > deg(c)/2, where ¢ = ab is the desired
product, and N’, N” are chosen as small as possible subject to the constraints
of Algorithm FFTMul. Calling Algorithm FFTMul twice, with arguments
N = N’"and N = N”, we obtain ¢ = ¢ mod (" +1) and ¢ = ¢ mod (2" +1).
Now it is easy to reconstruct the desired product ¢ from its “wrapped” versions
¢ and ¢”. Bit-serial pseudocode is given in Fig. @l

It is possible to implement the reconstruction loop efficiently using full-word
operations provided N’ — N” > w. Thus, the reconstruction cost is negligible in
comparison to the cost of FFTMul calls.

4 Experimental Results

The experiments reported here were made on a 2.66Ghz Intel Core 2 processor,
using gee 4.1.2. A first tuning program compares all Toom-Cook variants from

50 T T T

T
plail
truncate

40 |

30 B

20

0 e ! ! ! !
0 2000 4000 6000 8000 10000

Fig. 5. Comparison of the running times of the plain Cantor algorithm, its truncated
variant, our variant of Schonhage’s algorithm (F1), and its splitting approach (F2).
The horizontal axis represents 64-bit words, the vertical axis represents milliseconds.
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Karatsuba to TC4, and determines the best one for each size. The following table
gives for each algorithm the range in words where it is used, and the percentage
of word sizes where it is used in this range.

Algorithm Karatsuba TC3 TC3W TC4
Word range 10-65 (50%) 21-1749 (5%) 18-1760 (45%) 166-2000 (59%)

A second tuning program compared the best Karatsuba or Toom-Cook algo-
rithm with both FFT variants (classical and splitting approach): the FFT is first
used for 2461 words, and TC4 is last used for 3295 words.

In Fig. Blthe running times are given for our plain implementation of Cantor’s
algorithm over F7, and its truncated variant. We see that the overhead induced
by handling P, as a product implies that the truncated version should not be
used for sizes that are close to (and less than) a power of 2. We remark that

Table 1. Comparison of the multiplication routines for small degrees with existing
software packages (average cycle counts on an Intel Core2 CPU)

N =64 128 192 256 320 384 448 512

NTL 5.4.1 99 368 703 1130 1787 2182 3070 3517
LIDIA 2.2.0 117 317 787 988 1926 2416 2849 3019
ZEN 3.0 158 480 1005 1703 2629 3677 4960 6433
this paper 54 132 364 410 806 850 1242 1287

Table 2. Comparison in cycles with the literature and software packages for the multi-
plication of N-bit polynomials over GF(2): the timings of [I6LBI[I7] were multiplied by
the given clock frequency. Kn means n-term Karatsuba-like formula. In [8] we took the
best timings from Table 7.1, and the degrees in [I7] are slightly smaller. F1(K) is the
algorithm of Fig. Bl with parameter K = 3*; F2(K) is the splitting variant described
in Section with two calls to F1(K).

reference [16] [8] 17 NTL 5.4.1 LIDIA 2.2.0  this paper
processor Pentium 4 UltraSparcl IBM RS6k  Core 2 Core 2 Core 2
N =1536 1.1eb [KB} 1.1e4 2.5e4 1.0e4 [TC3]
4096 4.9e5 [K4] 5.3e4 9.4ed 3.9e4 [K2]
8000 1.3e6 1.6e5 2.8eb 1.1e5 [TC3W]
10240 2.2e6 [K5] 2.6e5 5.8e5 1.9e5 [TC3W]
16 384 5.7e6 3.4e6 4.8e5 8.6e5 3.3e5 [TC3W]
24576 8.3¢6 [K6) 9.3e5 2.1e6  5.9e5 [TC3W]
32768 1.9e7 8.7e6 1.4e6 2.6e6 9.3e5 [TC4]
57344 3.3¢7 [K7) 3.8¢6 7.3¢6 2.4e6 [TC4]
65536 4.7e7 1.7e7 4.3e6 7.8e6 2.6e6 [TC4]
131072 1.0e8 4.1e7 1.3e7 2.3e7 7.2e6 [TC4]
262 144 2.3¢8 9.0e7 4.0e7 6.9e7  1.9e7 [F2(243)]
524 288 5.2e8 1.2e8 2.1e8 3.7e7 [F1(729)]

1048576 1.1e9 3.8e8 6.1e8 7.4e7[F2(729)]
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this overhead is more visible for small sizes than for large sizes. This figure
also compares our variant of Schonhage’s algorithm (Fig. Bl) with the splitting
approach: the latter is faster in most cases, and both are faster than Cantor’s
algorithm by a factor of about two. It appears from Fig. [] that a truncated
variant of Schonhage’s algorithm would not save much time, if any, over the
splitting approach.

Tables [[l and ] compare our timings with existing software or published ma-
terial. Table [l compares the basic multiplication routines involving a fixed small
number of words. Table[2l compares the results obtained with previous ones pub-
lished in the literature. Since previous authors used 32-bit computers, and we
use a 64-bit computer, the cycle counts corresponding to references [16}[]17]
should be divided by 2 to account for this difference. Nevertheless this would
not affect the comparison.

5 Conclusion

This paper presents the current state-of-the-art for multiplication in GF(2)[x].
We have implemented and compared different algorithms from the literature,
and invented some new variants.

The new algorithms were already used successfully to find two new primitive
trinomials of record degree 24 036 583 (the previous record was 6 972 593), see [3].

Concerning the comparison between the algorithms of Schonhage and Cantor,
our conclusion differs from the following excerpt from [8]: The timings of Reis-
chert (1995) indicate that in his implementation, it [Schonhage’s algorithm] beats
Cantor’s method for degrees above 500,000, and for degrees around 40,000,000,
Schonhage’s algorithm is faster than Cantor’s by a factor of =~ 3 Indeed, Fig.
shows that Schonhage’s algorithm is consistently faster by a factor of about 2, al-
ready for a few thousand bits. However, a major difference is that, in Schonhage’s
algorithm, the pointwise products are quite expensive, whereas they are inex-
pensive in Cantor’s algorithm. For example, still on a 2.66Ghz Intel Core 2,
to multiply two polynomials with a result of 22° bits, Schénhage’s algorithm
with K = 729 takes 28ms, including 18ms for the pointwise products modulo
25832 4 22916 4 1. Cantor’s algorithm takes 57ms, including only 2.3ms for the
pointwise products. In a context where a given Fourier transform is used many
times, for example in the block Wiedemann algorithm used in the “linear alge-
bra” phase of the Number Field Sieve integer factorisation algorithm, Cantor’s
algorithm may be competitive.
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Abstract. We present a new method for predicting the sieving effort
for the number field sieve (NFS) in practice. This method takes relations
from a short sieving test as input and simulates relations according to
this test. After removing singletons, we decide how many relations we
need for the factorization according to the simulation and this gives a
good estimate for the real sieving. Experiments show that our estimate
is within 2% of the real data.

1 Introduction

One of the most popular methods for factoring large numbers is the number field
sieve [M], as this is the fastest algorithm known so far. In order to estimate the
most time-consuming step of this method, namely the sieving step in which the
so-called relations are generated, one looks at actual sieving times for numbers
of comparable size. If these are not available, one could try to extrapolate actual
sieving times for smaller numbers, using the formula for the running time L(N)
of this method, where N is the number to be factored. We have

L(N) = exp(((64/9)'/3 + o(1))(log N)*/3(loglog N)?/3), as N — oo ,

where the logarithms are natural. These estimates can be 10-30 % off.

In this paper we present a method for predicting the number of relations
needed for factoring a given number in practice within 2 % of the actual number
of relations needed. With ‘in practice’ we mean: on a given computer, for a given
implementation, and for a given choice of the parameters in the NFS. This allows
us to predict the actually required sieving time within 2 %. Our method is based
on a short sieving test and a very cheap simulation of the relations needed for the
factorization. By applying this method for various choices of the parameters of
the number field sieve, it is possible to find an optimal choice of the parameters,
e.g., in terms of minimal sieving time or in terms of minimizing the size of the
resulting matrix. Before going into details we give a short overview of the NFS
in order to show where our method fits in.

The NFS consists of the following four steps. First we select two irreducible
polynomials fi(z) and fa(x), fi1, fo € Z[x], and an integer m < N, such that

fi(m) = fa(m) =0 (mod N) .

A.J. van der Poorten and A. Stein (Eds.): ANTS-VIII 2008, LNCS 5011, pp. 167 2008.
© Springer-Verlag Berlin Heidelberg 2008
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Polynomials with ‘small” integer coefficients are preferred, because the values of
these polynomials are smaller on average and smoother (i.e. having smaller prime
factors on average) than the values of polynomials with large integer coefficients.
Usually f1(z) is a linear polynomial and f2(x) a higher degree polynomial, re-
ferred to as rational side and algebraic side, respectively. If IV is of a special form
(e.g., ¢ £ 1) then we can use this to get a polynomial fo(x) with very small
coefficients. In that case we talk about the special number field sieve (SNFS),
else we talk about the general number field sieve (GNFS). By a1 and as we
denote roots of fi(z) and fo(x), respectively.

The second step is the relation collection. We choose a factorbase F'B of primes
below the bound F' and a large primes bound L; for ease of exposition we take the
same bounds on both the rational side and the algebraic side. Then we search for
pairs (a,b) such that ged(a, b) = 1, and such that both F(a,b) = b4°8(/1) £, (a/b)
and Fy(a,b) = b3%(2) f,(a/b) have all their prime factors below F and at most
two prime factors between F' and L, the so-called large primes. These pairs (a, b)
are referred to below as relations (a;, b;).

There are many possibilities for the relation collection, the fastest of which
are based on sieving. Two sieving methods in particular are widely used, namely
line sieving and lattice sieving. For line sieving we select a rectangular sieve area
of points (a, b) and the sieving is done per horizontal line. For lattice sieving we
select an interval of so-called special primes and for each special prime we only
sieve those pairs (a,b) for which this special prime divides b3°¢(/2) f,(a/b); for
each special prime these pairs form a lattice in the sieving area. In case of SNFS
the special prime is chosen on the rational side.

The third step consists of linear algebra to construct a set .S of indices ¢ such
that the two products [, g(a; — bia) and [],c g(a; — bjaz) are both squares of
products of prime ideals. This product comes from the fact that b3V £, (a/b) is
the norm of the algebraic number a — ba;, multiplied with the leading coefficient
of fi(x). The principal ideal (a — bay) factors into the product of prime ideals
in the number field Q(«q). The situation is similar for fs.

The last step is the square root step. We determine algebraic numbers o €
Q(q) and oy € Q(az) such that (o})? = [[;cq(a;i—bicr) and (0h)* = [[;cq(ai—
biaz). Then we use the homomorphisms ¢,, : Q(a1) — Z/NZZ and ¢q, :
Qo) — Z/NZ with 6, (01) = by (@2) = m 10 g0t B, (0% = G ((04)2) =
bar (ITics(ai — biar)) = [Ties((ai — bim) = Pa,(ay)?(mod N). Now compute
ged(@a, () — da,(ah), N) to obtain a factor of N. If this gives the trivial fac-
torization, continue with the next set of indices, otherwise we have found a non-
trivial factorization of N. For more details of the NFS, see e.g., [3], [4], or [5].

Our method works as follows. After choosing polynomials, bounds F' and L,
and a sieve area, we perform a sieve test for a relatively short period of time.
For a 120-digit IV one could sieve for ten minutes or so, but for larger numbers
one may spend considerably more time on the sieve test. Based on the relations
in this sieve test we simulate as many relations as are necessary for factoring the
number. The simulation uses a random number generator and functions that de-
scribe the underlying distribution of the large primes, and this can be done fast.



Predicting the Sieving Effort for the Number Field Sieve 169

During the simulation of the relations, we regularly remove the singletons from
all the relations simulated so far. As soon as the number of relations left after
singleton removal exceeds the number of primes in the relations we stop and it
turns out that the total number of relations simulated so far gives us a good
estimate of the actual number of relations that we need to factor our number.

The number of useful relations after singleton removal grows in a hard-to-
predict fashion as a function of the number of relations found. This growth
behaviour differs from number to number, which makes it hard to predict the
overall sieving time: for instance, even estimates based on factoring times of
numbers of comparable size can easily be 10 % off. Our method, however, which
is purely based on the individual behavior of the relations found for the number
to be factored, allows us to predict how the number of useful relations will be-
have as a function of the number of relations found, thereby giving us a tool to
accurately predict the overall sieving time.

The simulations in this paper were carried out on a Intel® Core™?2 Duo with
2 GB of memory. The line sieving data sets were generated with the NFS soft-
ware package of CWI. The lattice sieving data sets were given by Bruce Dodson
and Thorsten Kleinjung.

In Section 2 we describe how we simulate the relations. Section 3 is about the
singleton removal and about how to decide when we have enough relations to
factor the given number. In Section 4 we compare results of the simulation with
real factorizations and Section 5 contains the conclusions and our intentions for
future work.

2 Simulating Relations

Before we start with the simulation, we run a short sieving test. In order to get
a representative selection of the actual relations, we ensure that the points we
are sieving in this test are spread over the entire sieving area. The parameters
for the sieving are set in such a way that we have at most two large primes both
on the rational side and on the algebraic side. In the case of lattice sieving we
have one additional special prime on one of the sides. In this section we describe
the process of simulating relations both for line sieving and for lattice sieving.
Note that we only simulate the large primes; for the primes in the factorbase we
use a correction as will be explained in Section 3.

The first step after the sieving test consists of splitting the relations accord-
ing to the number of large primes. The set of relations with ¢ large primes on
the rational side and j large primes on the algebraic side is denoted by r;a; for
i,7 € {0,1,2}. This leads to nine different sets and the mutual ratios of their car-
dinalities determine the ratios by which we will simulate the relations. In the case
of lattice sieving we split the relations in the same way, ignoring the special prime.

Next we take a closer look at the relations in each set and specify a model
that fits the distribution of the large primes in these sets as closely as we can
accomplish. To clarify this, we explain for each set how to simulate the relations
in that set, for the case of line sieving.
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roag: We count the number of relations in this set.

riag: We started with sorting all the large primes and put them in an array. Our
first experiments with simulating the large primes (and removing singletons)
concentrated on the large primes at hand. We tried linear interpolation between
two consecutive large primes, Lagrange polynomials, and splines, but all these
local approaches did not give a satisfying result; the result after singleton removal
was too far from the real data. We then tried a more global approach, looking
at all the large primes and see if we could find a distribution for them. We
found that an exponential distribution simulates best the distribution of these
large primes over the interval [F, L] (cf. [2], Ch. 6) and the result after singleton
removal was satisfactory. The inverse of this distribution function is given by

G(x):F—alog(l—x(l—eF;L»,ngg1, (1)

where a is the average of the large primes in the set r1ag. Note that G(0) = F
and G(1) = L. In order to generate primes according to the actual distribution
of the large primes, we generate a random number between 0 and 1, substitute
this number in G(z), round the number G(x) to the nearest prime, and repeat
this for each prime that we want to generate.

To avoid expensive prime tests, we work with the index of the primes p,
defined as i, = 7(p), rather than with the prime itself. This index can be found
by using a look-up table or the approximation i, ~ |7+ 1052 » 1 10213’ , [6].
Experiments showed that this third order approximation gives almost the same
results as looking up indices in a table. It is especially more efficient to use this
approximation when L is large. For working with indices, we have to adjust (d);
we write i for the index of the first prime above F', and iy, for the index of the
prime just below L, and a’ for the average of the indices of the large primes in
the set r1ag. Then the formula becomes

G(ax):ip—allog(l—x(l—eiF;iL)) : (2)

To illustrate that the distribution of the large primes is approximated well by
@) we have generated the following graph (Fig. 1), which consists of two sorted
sets. One set consists of the indices of the primes of the original sieving data and
the other set consists of the indices simulated with help of (2]). The line of the
simulated data is the one which lies below the other line (of the original data)
around position 7000.

The necessary number of relations in the set r1ayp depends on how many
relations we have to generate in total.

roar: We would like to use the same idea as we used for ryag, but now we have to
deal with algebraic primes. This means that not all primes can occur, and that
each prime that does occur can have up to d different roots, where d is the degree
of the polynomial fo(x). This yields pairs of a prime and a root which we denote
by (prime,root). Luckily, (heuristically) the amount of pairs (prime, root) with
F < prime < L is about equal to the amount of primes between F' and L. This
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Fig. 1. Comparing original and simulated data

implies that we do not have to simulate pairs with a certain subset of indices,
as we may assume that all indices can occur in the simulation. We found that
an exponential distribution fits here as well, so here we use the same approach
as we did for ryaq.

ria1: We know now how to simulate r1ag and rga;, and we assume that the
value of the index on the rational side is independent of the value of the index
on the algebraic side. We combine both approaches: using (@), generate a random
number and compute the corresponding rational index, generate a new random
number (do not use the first random number as input for the random number
generator) and compute the algebraic index.

roag: Here we have to deal with two large primes on the rational side, denoted
by ¢1 and ga with ¢1 > g2. We started with sorting the list with ¢; and (to
our surprise) we found that a linear distribution fits these data well. So the
distribution function of the index 44, of ¢; is given by

Hl(ac) =i+ x(iL — iF) s

where x is a number between 0 and 1.

We continued with g2 and sorted them. Here, an exponential distribution fits
the data, but now we have to take into account that ¢» < ¢;. Remember that
we need an average value for the exponential distribution, but we cannot use all
go-values. Instead of using one average value, we make a list of averages a4, of
the sorted go-indices, where a4, [j] contains the average of the first j go-indices.

Now we describe how to simulate elements of roag. We begin with a random
number between 0 and 1 and compute H;(z), which gives us an index 74, of g;.
We look up this index in the sorted list of ¢go-indices and the corresponding po-
sition j tells us which average we should use for computing the index g4, of go.
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We generate a new random number between 0 and 1 and substitute it for x in
the following formula Hs(x), which is an adjusted form of G(x):

ip—iq
Hy(x) = ip — ag,[j]log (1 —T <1 —e aqz[j]l ))

This gives us an index i, of g2 that is smaller than the index we generated
for ¢1.

Our observation of a linear distribution of the largest prime and an exponential
distribution of the second prime may not be as one would expect theoretically,
but this might very well be a consequence of sieving in practice. For example,
products of size approximately L? factor most of the time as one prime below
L and one prime above L and are discarded. Thus most sievers do not spend
much time on factors of this size. It may turn out to be the case that a siever
with different implementation choices gives rise to different distributions, which
needs to be investigated further.

To illustrate the distribution of the products of the two large primes for the
dataset of 13,220+ (cf. Section 4) found by our implementation of the siever,
we added for each relation in reag the indices of the two large primes and split
the interval [2ip,2iz] in ten equal subintervals (labeled s = 1,...,10). For each
subinterval we counted the number of relations for which the sum of the two
indices of the two large primes lies in this subinterval: see Table 1.

Table 1. Distribution of the sum of the indices (13,220+)

s 1 2 3 4 5 6 7 8 9 10
# relations 120780 161735 148757 133845 121967 78725 39253 20710 8107 0

The zero in the last column is due to one of the bounds in the siever, which was
set at FO1 L9 instead of L2.

roaz: We know how to deal with r2ap and we apply the same approach to rgas,
as we can make the same transition as we made from r1aq¢ to roaj.

Sorting the list with ¢; showed that we could indeed use a linear distribution
and the sorted list with ¢ showed that an exponential distribution fitted here.
Now we simulate elements of roag in the same way as elements of roas.

rias: As with ria;, we assume that the rational side and the algebraic side
are independent. Here we combine the approaches of r1a¢p and rgas to get the
elements of r1as.

roa1: Combine the approaches of roag and rga; to get the elements of roaq.
roas: As in the previous two sets, we combine two approaches, this time r2aq
and rgas.

Summarizing, our simulation model consists of four assumptions:

— the rational side and the algebraic side are independent,
— the rational side and the algebraic side are equivalent,
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— a model for one large prime (described in 1 aop),
— a model for two large primes (described in roag).

In case of lattice sieving, we simulate the relations in the same way and
add a special prime to all the relations in the following way. We compute the
average number of relations per pair (special prime,root) in the sieving test.
Then we divide the number of relations we want to simulate by this average and
this gives the total number of special primes in our simulation. Then we select
an appropriate interval from which the special primes are chosen. Divide this
interval in a (small) number of sections: per section select randomly the special
primes and add each of these special primes to a relation. By dividing in sections
(and simulating the same amount of relations per section) we make sure that
the entire interval of special primes is covered, but by choosing randomly in each
section, we get enough variation in the amount of relations per special prime.
If the interval of the special primes is very large, it might become necessary to
decrease the number of relations per section. In our example this was not the
case, but a well-chosen sieve test will give this information.

It is possible to use different factorbase bounds for the rational primes and
the algebraic primes, bound the product of the two large primes on the same
side, etc. All these details in the sieving influence the relations, but once the
general model is known, it is relatively easy to adjust it to match the details.

3 The Stop Criterion

We now know how to simulate relations, but how many should we simulate?

In order to factor the number N we have to find dependencies in a matrix,
which is determined by the relations, as mentioned in the introduction in the
third step of the NFS. Every column is identified with a prime < L (rational and
algebraic primes). Suppose each row represents a relation. If a prime occurs an
odd number of times in that relation, we put a one in the column of that prime
and a zero otherwise. After representing all relations in this matrix, we remove
those relations with a 1 that is the only 1 in the entire column, the so-called
singletons. This may generate new singletons, so this singleton removal step is
repeated until all primes occur at least twice. In practice, this is done before
actually building a matrix.

For our stop criterion it is enough to know when we have enough relations,
i.e. when the number of relations after singleton removal exceeds the number of
different primes that occur in the remaining relations.

After the singleton removal, we count how many relations are left and how
many different large primes occur in these relations. We define the percentage
oversquareness O, after singleton removal (s.r.) as

Op:= 7 x 100
ng+ng—ny
where n, is the number of relations after singleton removal, n; is the number of
different large primes after singleton removal, np is the number of primes in the
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factorbase, approximated by 7(Fyat) + W(Falg), and ny is the number of free
relations from factorbase elements. We have ([3], Ch. 3):

1 .
ny = gﬂ(mm(FratvFalg)) ,

where g is the order of the Galois group of f1(z)f2(z). If O, > 100 % we may
expect to find a dependency in the matrix, and we may stop with simulating
relations. To make practically sure to find a dependency, we may stop at 102 %.
Even a larger percentage is allowed if one would like to have more choice in the
relations that can form a dependency and subsequently form a smaller matrix
in the linear algebra step.

One final point concerns lattice sieving. It is well known that lattice sieving
produces lots of duplicates, especially when it involves many special primes. We
treat our relations as if there are no duplicates, but that implies that in the case
of lattice sieving we have to add a certain number of relations to the relations
that we should collect in the sieving stage. This number can be computed as
in [I]. The basic idea in [I] is to run a small sieve test and find out which
relations have more than one prime in the special primes interval. If such a
relation would be found by more than one lattice in the sieving area (remember
that each special prime gives rise to a lattice in the sieving area), than this gives
a duplicate relation.

4 Experiments

We have applied our method to several real data sets (coming from factored
numbers) and show that this gives good results. We have carried out two types
of experiments.

First we assumed that the complete data set is given and we wanted to know if
the simulation gave the same oversquareness when simulating the same number
of relations as is contained in the original data set. For the simulation we used
0.1% of the original data.

Secondly we assumed that only a small percentage (0.1 %) of the original data
is known. Based on this data we simulated relations until O,. > 100 %. Then we
compared this with the oversquareness of the same number of original relations.

This 0.1 % is somewhat arbitrary. We came to it in the following way: we
started a simulation based on 100 % real data and lowered this percentage in the
next experiment until results after singleton removal were too far from the real
data. We went down as far as 0.01 %, but this percentage did not always give
good results, unless we would have been satisfied with an estimate within 5%
of the real data (although some experiments with 0.01% of the real data were
even as good as the ones based on 0.1 % of the real data).

4.1 Line Sieving

Some relevant parameters for all the real data sets in this section are given in
Table 2, where M stands for million. Numbers are written in the format a, b+ or
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Table 2. Sieving parameters (line sieving)

number # dec. digits F L g np—ny
13,220+ 117 30M 400M 120 3700941
26,142+ 124 30M 250M 120 3700941

19,183— 131 30M 250M 18 3613192
66,129+ 136 35M 300M 18 4175312
80,123 — 150 55M 450M 18 6383294

a,b—, meaning a® 4+ 1 or a® — 1. In the case of GNFS, some prime factors were
already known and for the remaining factors it was more efficient to use GNFS
instead of SNF'S.

The experiments for the first two GNFS data sets 13,220+ and 26, 142+ are
in Table 3. Here, O stands for the original data and S for the simulated data.
Table 3 shows that the numbers were oversieved, but the simulated data show
about the same oversquareness. In Table 4, we computed the relative difference
(S—0)/0 x 100 % of the entries in the S- and O-column of Table 3. We see that
our predictions of the number of relations after s.r., the number of large primes
after s.r., and the oversquareness are close to the real data to about 1 %.

Table 3. Experiments line sieving

GNFS 13,2204 O 13,2204+ S 26,142+ O 26,142+ S
# relations before s.r. 35496483 35496483 23580294 23580294
# relations after s.r. 21320864 21394640 15150790 15253825
# large primes after s.r. 13781518 13950420 9448082 9397751

oversquareness (%) 121.96 121.21 115.22 116.45

Table 4. Relative differences of Table 3 results

GNFS 13,2204 26,142+
relations after s.r. (%) 0.35 0.68
large primes after s.r. (%) 1.22  —0.53
oversquareness (%) —0.61 1.07

We give the following timings for these experiments: simulation of the rela-
tions, singleton removal, and real sieving time (Table 5). For the actual sieving
we used multiple machines and added the sieving times of each machine. As we
used 0.1 % data, we have to keep in mind that we need to add 0.1 % of the sieving
time to a complete experiment, which consists of generating a small data set,
simulate a big data set, and remove singletons. When we change parameters in
the NFS we have to generate a new data set.

Roughly speaking, we can say that one prediction of the total sieving time
(for a given choice of the NFS parameters) with our method costs less than one
CPU hour, whereas the actual sieving costs several hundreds of CPU hours.
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Table 5. Timings

GNFS 13,220+ 26,142+
simulation (sec.) 224 156
singleton removal (sec.) 927 573
actual sieving (hrs.) 316 709

Now for our second type of experiments, we assume that we only have a small
sieve test of the number to be factored. When are we in the neighbourhood of
100 % oversquareness according to our simulation and will the real data agree
with our simulation? We started to simulate 5M, 10M, ... relations (with incre-
ment 5M) and for these numbers we computed the oversquareness O,; when O,
approached the 100 % bound we decreased the increment to 1M. Table 6 gives
the number of relations for which O, is closest to 100 % and the next O, (for 1M
more relations), both for the simulated data and the original data. This may of
course be refined.

Table 6. Around 100 % oversquareness (GNFS)

# rel. before s.r. O, S (%) O, O (%) rel. diff. (%)

28M (13,220+)  99.66  99.87 —0.21
29M (13,220+)  103.15  103.29 —0.14
20M (26,1424+)  100.57  99.24 1.34
21M (26,1424+)  105.38  104.03 1.30

Table 7. Experiments line sieving

SNFS  # rel. before s.r. # rel. after s.r. # L.p. after s.r. oversquareness (%)

19,183— O 21259569 11887312 7849531 103.70
19,183— S 21259569 12156 537 7936 726 105.25
66,129+ O 26 226 688 15377495 10036 942 108.20
66,129+ S 26 226 688 15656 253 10123 695 109.49
80,123— O 36 552 655 20288 292 12810641 105.70
80,123— S 36 552 655 20648 909 12973952 106.67

For SNFS the higher degree polynomial has small coefficients. Tables 7-10
show the same kind of data as Tables 3-6, but now for SNFS. We start in
Table 7 with the complete data set and simulate the same number of relations.
Table 8 gives the relative differences of the results of the experiments in Table 7.
The timings are given in Table 9.

In Table 10 we simulate the number of relations that leads to an oversquare-
ness around 100 %. We compare this number with the real data and give the
differences in oversquareness.
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Table 8. Relative differences of Table 7 results

SNFS 19,183— 66,129+ 80,123—
relations after s.r. (%) 2.26 1.81 1.78
large primes after s.r. (%)  1.11 0.86 1.27
oversquareness (%) 1.49 1.19 0.92

Table 9. Timings

SNFS 19,183— 66,129+ 80,123—
simulation (sec.) 128 166 223
singleton removal (sec.) 487 603 771
sieving (hrs.) 154 197 200

Table 10. Around 100 % oversquareness (SNFS)

# rel. before s.r. O, S (%) O, O (%) rel. diff. (%)

20M (19,183—)  99.22  97.71 1.55
21M (19,183—)  104.06  102.51 1.51
23M (66,129+)  96.44  95.35 1.14
24M (66,129+)  100.72  99.60 1.12
34M (80,123—)  99.93  98.66 1.29
35M (80,123—)  102.82  101.50 1.30

177

All these data sets were generated with the NFS software package of CWI,
and the models for describing the underlying distributions were the same for

SNF'S and GNFS, as described in Section 2.

4.2 Lattice Sieving

For lattice sieving we used a data set from Bruce Dodson (7,333—, SNFS). Be-
sides the factorbase bound and the large primes bound, we have two intervals

for the special primes. These are given in Table 11.

Table 11. Sieving parameters (lattice sieving)

7,333—
# dec. digits 177
F 16 777215
L 250000 000

special primes [16 777 333, 29120617]
(60000 013, 73 747 441]
g 6
nE —nys 1976 740
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Table 12. Oversquareness 7,333—

# rel. before s.1. O, S (%) O, O (%) rel. diff. (%)

17M (7,333—) 98.34 97.45 0.91
18M (7,333—) 103.96 103.08 0.85
25112543 (7,333—) 135.39 136.64 —-0.91

As we are now dealing with lattice sieving, we have an extra (special) prime
to simulate, in the way described in Section 2. Fortunately, the distribution of
the other large primes did not change. The results of our experiments are given
in Table 12, based on 0.023 % original data. The last line in this table is the
total number of relations without duplicates. In total 26 024921 relations were
sieved.

Apart from receiving a lattice sieving data set from Bruce Dodson, we also
received lattice sieving data sets from Thorsten Kleinjung. Unfortunately the
model described in this paper for the large primes does not yield satisfactory
results for the latter data sets.

5 Conclusions and Future Work

Our experiments show that our simulation of the relations works well. Based on
a small fraction of the sieving data, we obtain a good model of the distribution
of the large primes in the relations. Combined with singleton removal, our es-
timation of the oversquareness is within 2 % of the real data. Thus we cheaply
obtain a good estimate of the number of necessary relations for factoring a given
number on a given computer, and hence of the actual computing time. There-
fore, this method is a useful tool for optimizing parameters in the number field
sieve, and we actually are using it in our practical factorization work.

Future work will include finding the correct model for the lattice sieve data
sets of Kleinjung and check to which extent this model depends on the imple-
mentation of the siever. A second objective is to find a theoretical explanation
for the occurrence of the various distributions (linear, exponential, ...) of the
large primes. Another objective will be to find the optimal oversquareness for
minimizing the resulting matrix. Once these issues are properly understood we
intend to develop a tool to determine bounds F' and L that optimize the overall
effort for relation collection and matrix processing with respect to the available
resources.
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Abstract. Some implementations of stage 2 of the P—1 method of fac-
torization use convolutions. We describe a space-efficient implementa-
tion, allowing convolution lengths around 22® and stage 2 limit around
10'® while attempting to factor 230-digit numbers on modern PC’s. We
describe arithmetic algorithms on reciprocal polynomials. We present ad-
justments for the P+1 algorithm. We list some new findings.

Keywords: Integer factorization, convolution, discrete Fourier trans-
form, number theoretic transform, P—1, P41, multipoint polynomial
evaluation, reciprocal polynomials.

1 Introduction

John Pollard introduced the P-1 algorithm for factoring an odd composite inte-
ger N in 1974 [T, §4]. It hopes that some prime factor p of N has smooth p—1. It
picks by # £1 (mod N) and coprime to N and outputs by = b5 mod N for some
positive exponent e. This exponent might be divisible by all prime powers below
a bound Bj. Stage 1 succeeds if (p — 1) | e, in which case by = 1 (mod p) by
Fermat’s little theorem. The algorithm recovers p by computing ged(by — 1, N)
(except in rare cases when this GCD is composite). When this GCD is 1, we
hope that p — 1 = gn where n divides e and ¢ is not too large. Then

e/n
b= 06) =0 = )" = (B7) T =1 =1 (modp), (1)

so p divides ged(b{ — 1, N). Stage 2 of P-1 tries to find p when ¢ > 1 but ¢ is
not too large. The search bound for ¢ is called Bs.

Pollard [I1] tests each prime ¢ in [By, Bs] individually. If ¢; and g» are succes-
sive primes, then look up b7~ ? mod N in a small table. Given by* mod N, form
b mod N and test ged(bf> — 1, N). He observes that one can combine GCD
tests: if p | ged(x, N) or p | ged(y, N), then p | ged(zy mod N, N). His stage 2
cost is two modular multiplications per ¢, one GCD with N at the end, and a
few multiplications to build the table.

Montgomery [7] uses two sets S7 and Ss, such that each prime ¢ in [By, Bs]
divides a nonzero difference s — sy where s1 € S7 and s2 € Sa. He forms bj* — b2
using two table look-ups, saving one modular multiplication per g. Sometimes one

A.J. van der Poorten and A. Stein (Eds.): ANTS-VIIT 2008, LNCS 5011, pp. 180-IL95] 2008.
© Springer-Verlag Berlin Heidelberg 2008
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s1 — s works for multiple q. Montgomery adapts his scheme to Hugh Williams’s
P+1 method and Hendrik Lenstra’s elliptic curve method (ECM).

These changes lower the constant of proportionality, but stage 2 still uses
O(7m(B2)—m(B1)) (number of primes between B; and Bs) operations modulo N.

The end of [II] suggests an FFT continuation to P—1. Silverman [8, p. 844]
implements it, using a circular convolution to evaluate a polynomial along a
geometric progression. It costs O(y/Bs log By) operations to build and multiply
two polynomials of degree O(v/Bz), compared to O(Bay/log B2) primes below
Bs, so [8] beats [7] when Bj is large.

Montgomery’s dissertation [9] describes an FFT continuation to ECM. He
takes the GCD of two polynomials. Zimmermann [I3] implements another FFT
continuation to ECM, based on evaluating a polynomial at arbitrary points.
These cost an extra factor of log By when the points are not a geometric pro-
gression. Zimmermann adapts his implementation to P + 1 methods.

Like [8], we evaluate a polynomial along geometric progressions. We exploit
patterns in its roots to generate its coeflicients quickly. Those patterns are not
present in ECM, so these techniques do not apply there. We aim for low memory
overhead, saving it for convolution inputs and outputs (which are elements of
Z/NZ). Using memory efficiently lets us raise the convolution length ¢. Many in-
termediate results are reciprocal polynomials, which need about half the storage
and can be multiplied using weighted convolutions.

Doubling ¢ costs slightly over twice as much time per convolution, but each
longer convolution extends the search for ¢ (and effective By) fourfold. Silver-
man’s 1989 implementation used 42 megabytes and allowed 250-digit inputs. It
repeatedly evaluated a polynomial of degree 15360 at 8-17408 points in geometric
progression, using ¢ = 32768. This enabled him to achieve By ~ 10'°.

Today’s (2008) PC memories are 100 times as large as that used in [§]. With
this extra memory, we achieve £ = 223, a growth factor of 256. With the same
number of convolutions (individually longer lengths but running on faster hard-
ware) our By advances by a factor of 2562 ~ 6.6e4. Supercomputers with huge
shared memories do spectacularly.

Section [I2] gives some new results, including a record 60-digit P+1 factor.

2 P+41 Algorithm

Hugh Williams [12] introduced a P+1 factoring algorithm. It finds a prime factor
p of N when p+ 1 (rather than p — 1) is smooth. It is modeled after P—1.

One variant of the P+1 algorithm chooses Py € Z/NZ and lets the indeter-
minate ag be a zero of the quadratic a3 — Pyag + 1. We hope this quadratic is
irreducible modulo p. If so, its second root in F,2 will be of). The product of its
roots is the constant term 1. Hence aﬁ’“ =1 (mod p) when we choose well.

Stage 1 of the P+1 algorithm computes P, = a1 + 041_1 where oy = of
(mod N) for some exponent e. If gcd(P;—2, N) > 1, then the algorithm succeeds.
Stage 2 of P+1 hopes that af =1 (mod p) for some prime g, not too large, and
some prime p dividing V.
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Most techniques herein adapt to P+1, but some computations take place in
an extension ring, raising memory usage if we use the same convolution sizes.

2.1 Chebyshev Polynomials

Although the theory behind P+1 mentions ap and a; = af, an implementation
manipulates primarily values of of + a5 ™ and af + a7 " for various integers n
rather than the corresponding values (in an extension ring) of af and af.

For integer n, the Chebyshev polynomials V,, and U, are determined by
Va(X+X ) =X"+X"and (X =X YU, (X+X"!)= X"~ X" The use
of these polynomials shortens many formulas, such as

Pi=ai+a'=af +ay°=Ve(ag +ap ') = Vo(PRy) (mod N).

These polynomials have integer coefficients, so Py = V. (Fy) (mod N) is in the
base ring Z/NZ even when «g and «; are not.
The Chebyshev polynomials satisfy many identities, including

an(X) - Vm(Vn(X))a
Ui (X) = Un(X) Vi (X) = U (X), (2)
Um+n(X) = Vm(X) Un(X) + Umfn(X)v
Vm+n(X) - VM(X) Vn(X) - VM—n(X)v (3)
Vi (X) = (X2 = 4) Upt(X) Un(X) + Vi (X)

3 Overview of Stage 2 Algorithm

Our algorithm performs multipoint evaluation of polynomials by convolutions.
Tts inputs are the output of stage 1 (b1 for P—1 or P; for P+1), and the desired
stage 2 interval [B1, Ba].

The algorithm chooses a highly composite odd integer P. It checks for ¢
in arithmetic progressions with common difference 2P. There are ¢(P) such
progressions to check when ged(gq,2P) = 1.

We need an even convolution length fmax (determined primarily by memory
constraints) and a factorization ¢(P) = s182 where s is even and 0 < s1 < fmax.
Sections B and [[T] have sample values.

Our polynomial evaluations will need approximately

52{ By — By -‘QWP) By — By
2P (fmax — $1) 2P s1(fmax — s1)

convolutions of length ¢max. We prefer a small ¢(P)/P to keep (@) low. We also
prefer s; near {max/2, say 0.3 < s1/¢max < 0.7.

Using a factorization of (Z/PZ)* as described in §0l it constructs two sets Sy
and Sy of integers such that

(a) ‘Sl| = S and ‘SQ| = S9.
(b) Si is symmetric around 0. If k € Sy, then —k € 5;.

(4)
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(¢) If k € Z and ged(k, P) = 1, then there exist unique k; € S; and ko € S
such that k = k1 + k2 (mod P).

Once S7 and Sy are chosen, it computes the coefficients of

fx)=x"/2 T (X =b7*) mod N (5)
k1€51

by the method in {7l Since S; is symmetric around zero, this f(X) is symmetric
in X and 1/X.
For each ko € S it evaluates (the numerators of) all

FEFFETIPY od N (6)

for fmax — s1 consecutive values of m as described in §8 and checks the product
of these outputs for a nontrivial GCD with N. This checks s1(fmax — s1) (not
necessarily prime) candidates, hoping to find q.

For the P-+1 method, replace (@) by f(X) = X ~*1/2 [Ix,es, (X—a?**) mod N.
Similarly, replace by by a; in (@). The polynomial f is still over Z/NZ since
each product (X — a2 )(X —a; %) = X2 — Vo, (P1) 4+ 1 € (Z/NZ)[X] but the
multipoint evaluation works in an extension ring. See 811

4 Justification

Let p be an unknown prime factor of N. As in (), assume b =1 (mod p) where
q is not too large, and ged(q, 2P) = 1.
The selection of S; and S5 ensures there exist k1 € S7 and kg € S5 such that
(g — P)/2=k1 + k2 (mod P). That is,
q= P+ 2ky + 2ko + 2mP = 2k; + 2ko + 2m + 1)P (7)

for some integer m. We can bound m knowing bounds on ¢, k1, ko, as detailed
in §5 Both b2* are roots of f (mod p). Hence

FOFHEIE) = (0] 7) = f(b7*) =0 (mod p). (8)

For the P+1 method, if of = 1 (mod p), then (§) evaluates f at X =
a2k EmADE _ (=2 The factor X —ap M of £(X) evaluates to r—2F1 (ad—1),
which is zero modulo p even in the extension ring.

5 Selection of S; and S,

Let “+” of two sets denote the set of sums. By the Chinese Remainder Theorem,

(Z)(mn)Z)* = n(Z/mZ)* + m(Z/nZ)* if ged(m,n) = 1. 9)
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This is independent of the representatives: if S = (Z/mZ)* (mod m) and T =
(Z/nZ)* (mod n), then nS + mT = (Z/(mn)Z)* (mod mn). For prime powers,
(Z/p*Z)* = (Z/pL)* + =) p'(Z/pL).

We choose S and Sp so that Sy + Se = (Z/PZ)* (mod P) which ensures
that all values coprime to P, in particular all primes, in the stage 2 interval
are covered. One way uses a factorization mn = P and (@l). Other choices are
available by factoring individual (Z/pZ)*, p | P, into smaller sets of sums.

Let R, = {2i—n—1:1<i < n} be the arithmetic progression centered at 0
of length n and common difference 2. For odd primes p, a set of representatives
of (Z/pZ)* is Rp_1. Its cardinality is composite for p # 3 and the set can be
factored into arithmetic progressions of prime length by R,,, = R, + mR,.
If p = 3 (mod 4), alternatively prg + JR(y—1)/2 can be chosen as a set of
representatives with smaller absolute values.

When evaluating (@) for all my < m < msq and ky € So, the highest exponent
coprime to P that is not covered at the low end of the stage 2 range will be
2max(Sy + S2) + (2my — 1)P. Similarly, the smallest value at the high end of
the stage 2 range not covered is 2 min(Sy + Sz) + (2mz + 1) P. Hence, for a given
choice of P, S1, Sa, m; and mag, all primes in [(2m; — 1) P 4+ 2 max(S; + Sa) + 1,
(2mg + 1)P 4 2min(S; 4+ S2) — 1] are covered.

Choose parameters that minimize ss - fmax so that [By, Bs] is covered, fmax
is permissible by available memory, and, given several choices, (2ms + 1)P +
2min(S; + S2) is maximal.

For example, to cover the interval [1000, 500000] with ¢max = 512, we might
choose P = 1155, 81 = 240, so = 2, m; = —1, my = 271. With S; =
231({-1,1}+{-2,2})+165({—2,2}+{—1,0,1})+105({-3,3}+{-2,-1,0,1,2})
and Sy = 385{—1, 1}, we have max(S; + S2) = — min(S; + S2) = 2098 and thus
cover all primes in [—3- 1155+ 4196 + 1, 5411155 —4196 — 1] = [732, 620658].

6 Circular Convolutions and Polynomial Multiplication

Let R be aring and £ a positive integer. All rings herein are assumed commutative
with 1. A circular convolution of length ¢ over R multiplies two polynomials
f1(X) and f2(X) of degree at most ¢ — 1 in R[X], returning f;(X)f2(X) mod
X*— 1. When deg(f1) + deg(fa2) < ¢, this gives an exact product.

If R has a primitive /-th root w of unity, and if ¢ is not a zero divisor in R,
then one convolution algorithm uses the discrete Fourier transform (DFT) [I1
chapter 7). Fix w. A forward DFT evaluates all fi(w’) for 0 < i < ¢. Another
forward DFT evaluates all £ values of fa(w?). Multiply these pointwise. Then an
inverse DFT interpolates to find a polynomial f5 € R[X] of degree at most £ —1
with f3(w?) = f1(w?) f2(w?) for all i. Return f3.

If ¢ is a power of 2 and we use a fast Fourier transform (FFT) algorithm for
the forward and inverse DFTs, then the convolution takes O({log ¢) operations
in a suitable ring, compared to O(¢?) ring operations for the naive algorithm.
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6.1 Convolutions over Z/NZ

The DFT cannot be used directly when R = Z/NZ, since we don’t know a
suitable w. As in [I3] p. 534], we consider two ways to do the convolutions.

Montgomery [8, §4] suggests a number theoretic transform (NTT). He treats
the input polynomial coefficients as integers in [0, N — 1] and multiplies the
polynomials over Z. The product polynomial, reduced modulo X* — 1, has co-
efficients in [0, £(N — 1)2]. Select distinct NTT primes p; that each fit into one
machine word such that []; p; > €(N — 1) Require each p; = 1 (mod £), so
a primitive /-th root of unity exists. Do the convolution modulo each p; and
use the Chinese Remainder Theorem (CRT) to determine the product over Z
modulo X* — 1. Reduce this product modulo N. Montgomery’s dissertation [9,
chapter 8] describes these computations in detail.

The convolution codes need interfaces to (1) zero a DFT buffer (2) insert an
entry modulo N in a DFT buffer, i.e. reduce it modulo the NTT primes, (3)
perform a forward, in-place, DFT on a buffer, (4) multiply two DFT buffers
pointwise, overwriting an input, and perform an in-place inverse DFT on the
product, and (5) extract a product coefficient modulo N via a CRT computation
and reduction modulo N.

The Kronecker-Schénhage convolution algorithm uses fast integer multiplica-
tion. See §I11 Nussbaumer [I0] gives other convolution algorithms.

6.2 Reciprocal Laurent Polynomials and Weighted NTT

Define a reciprocal Laurent polynomial (RLP) in X to be an expression ag +
Z?:l aj (X9 +X77) =ao+ Z?:l a;jVi(X 4+ X~1) for scalars a; in a ring. It
is monic if ag = 1. It is said to have degree 2d if aq # 0. The degree is always
even. A monic RLP of degree 2d fits in d coefficients (excluding the leading 1).

While manipulating RLPs of degree at most 2d, the standard basis is {1} U
{(XT4+X77:1<j<dy={1}U{V;(Y):1<j<d} whereY = X + X L.

Let Q(X) = qo + Z;l“:l ¢; (X7 4+ X~7) be an RLP of degree at most 2d, and
likewise R(X) an RLP of degree at most 2d,.. To obtain the product RLP S(X) =
Q(z)R(z) = so+ Z;l;l $;(X7 4+ X~7) of degree at most 2ds = 2(d, +d,), choose
a convolution length ¢ > d, and perform a weighted convolution product [4]
by computing S(wX) = Q(wX)R(wX) mod (X* — 1) for a suitable w. Suppose
S(wX) =10 5X = S(wX) mod (X! —1). If 0 < i < dy, then the coefficient
of X" or X~%in Q(X)R(X) is s;. The coefficient of X* in Q(wX)R(wX) is s;w’,
whereas its coefficient of X% is s;/w’. When 0 < i < ¢, the coefficient 3; of
X' in S(wX) has a contribution s;w’ from X in Q(wX)R(wX) (if i < d,) as
well as sp_;/w’™" from X~* (if dy < ¢ —i). This translates to §; = s;w’ when
0 <i < {—dg, which we can solve for s;. When instead ¢ — ds < i < dg, we find

5; = s;w' + 50 /w'"". Replacing i by £ — i gives the system (wl_g wi) (50) =

( 5 gl;:“b ) There is a unique solution when w # 0 and the matrix is invertible.

This leads to the algorithm in Figure[Il It flows like the interface in §6.11
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Input: RLPs Q(X) = qo + E?il ¢; (X7 + X779) of degree at most 2d,,
and R(X) =710+ Z?;l 7;(X? + X 77) of degree at most 2d,.,
both in standard basis. A convolution length ¢ > dg + d-
Output: RLP S(X) = so + E?;‘l 5;(X7 + X79) = Q(X)R(X) of degree at most
2ds = 2dq + 2d, in standard basis. Output may overlap input
Auxiliary storage: NTT arrays M and M’, each with £ elements per p;.
A squaring may use the same array for M and M’
Zero M and M’
For each NTT prime p;
Choose w; with w # 0, £1 (mod p;)
Set M0 := go mod p; and M; o := 1o mod p;
For 1 <i<d, (any order)
For each p;
Set Mj,; = wj-qi mod p; and Mj —; := wj_iqi mod p;
Do similarly with R and M’
For each p;
Perform forward NTTs of length ¢ modulo p; on Mj,. and M ...
Multiply elementwise M;, . := M;,.M; . and perform inverse NTT on Mj .
For 1 <i</{—ds—1set Mj;:= wj_iMj,i (mod pj)
For £ —ds <i< [£/2]

iji L 1 _w,g wiiiji/(l — wiw) _
Set (Mj,éf) o <—w_‘Z 1 ) (wi_ZMj,e—z‘/(l—w_”) mod p;

For 0 < i < ds perform CRT on M, ; residues to obtain s;, store in output

Fig. 1. NTT-Based Multiplication Algorithm for Reciprocal Laurent Polynomials

Our code chooses the NTT primes p; =1 (mod 3¢). We require 3 1 £. Our w;
is a primitive cube root of unity. Multiplications by 1 are omitted. When 3 1 1,

we use w;q; + w;iqi = —¢; (mod p;) to save a multiply.
Substituting X = e’ where i> = —1 gives
dq dr
Qe")R(e”) = | qo +2Zcosj9 70 +ZZcosj9
j=1 j=1

These cosine series can be multiplied using discrete cosine transforms, in approx-
imately the same auxiliary space needed by the weighted convolutions. We did
not implement that approach.

6.3 Multiplying General Polynomials by RLPs

In section [ we will construct an RLP h(X) which will later be multiplied by
various g(X ). The length-¢ DFT of h(X) evaluates h(w?) for 0 < i < £. However
since h(X) is reciprocal, h(w’) = h(w’~%) and the DFT has only #/2 + 1 distinct
coefficients. In signal processing, the DFT of a signal extended symmetrically
around the center of each endpoint is called a Discrete Cosine Transform of
type L. Using a DCT-T algorithm [2], we could compute the coefficients h(w?) for
0 <i < //2 with a length ¢/2 + 1 transform. We have not implemented this.
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Instead we compute the full DFT of the RLP (using X* = 1 to avoid negative
exponents). To conserve memory, we store only the £/2+ 1 distinct DFT output
coefficients for later use.

7 Computing Coefficients of f

Assume the P+1 algorithm. The monic RLP f(X) in (@), with roots a?* where
k € S1, can be constructed using the decomposition of S;. The coefficients of f
will always be in the base ring since P; € Z/NZ.

For the P-1 algorithm, set a; = by and P, = by + bl_l. The rest of the
construction of f for P—1 is identical to that for P+1.

Assume S7 and Ss are built as in §5] say S; =11 + 15 + - - - + T}, where each
T has an arithmetic progression of prime length, centered at zero. At least one
of these has even cardinality since sy = [S1| = [[, |T}| is even. Renumber the T}
so [Ty|=2and |To| > |T5| > -+ > |Timl

If Ty = {—ky, k1}, then initialize F}(X) = X + X' — a2 — 72" = X +

— Vag, (P1), a monic RLP in X of degree 2.

Suppose 1 < j < m. Given the coefficients of the monic RLP F;(X) with

roots af}“ for ky € Ty + --- + T}, we want to construct

Fin(X)= ][] Fia*Xx). (10)
k2€Tjt1

The set T} is assumed to be an arithmetic progression of prime length ¢ =
|Tj41] centered at zero with common difference k, say Tj11 = {(—1—t)k/2+ ik :
1< <t}. If tis even, k is even to ensure integer elements. On the right of (IT),
group pairs +ko when ko # 0. We need the coefficients of

Fj(a7"X) Fj(ah X)), if t = 2;
Fima(X) = { Fi(X) TV (5 (039 X) Fy(ar X)), if ¢ s odd.
Let d = deg(F;), an even number. The monic input F; has d/2 coefficients in
Z/NZ (plus the leading 1). The output Fj;, will have td/2 = deg(Fj4+1)/2 such
coeflicients.

Products such as Fj(a3¥" X) Fj(a; ' X) can be formed by the method in §7.1
using d coefficients to store each product The interface can pass a?*! + a; T2kt —
Vori(P1) € Z/NZ as a parameter instead of aﬂ’”

For odd ¢, the algorithm in 7] forms (¢ — 1)/2 such monic products each
with d output coefficients. We still need to multiply by the input F}. Overall we
store (d/2) + '5'd = td/2 coefficients. Later these (¢ +1)/2 monic RLPs can be
multiplied in pairs, with products overwriting the inputs, until F;1, (with ¢d/2
coefficients plus the leading 1) is ready.

All polynomial products needed for (I0]), including those in §7.1] have output
degree at most t deg(F;) = deg(Fj41), which divides the final deg(F,) = s1. The
polynomial coefficients are saved in the (MZNZ) buffer of §9l The (MDFT) buffer
allows convolution length ¢max/2, which is adequate when an RLP product has
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degree up to 2(fmax/2)—1 > s1. A smaller length might be better for a particular
product.

7.1 Scaling by a Power and Its Inverse

Let F'(X) be a monic RLP of even degree d, say F'(X) = 00—4—2?421 X+ X779,
where each ¢; € Z/NZ and ¢g/2 = 1. Given Q € Z/NZ, where Q = v +~7!
for some unknown v, we want the d coefficients (excluding the leading 1) of
F(yX) F(y~*X) mod N in place of the d/2 such coefficients of F. We are allowed
a few scalar temporaries and any storage internal to the polynomial multiplier.
Denote Y = X + X ~!. Rewrite, while pretending to know ~,
/2
F(yX)=co+ > (7' X +77'X ")
i=1
/2
=+ 35 (0 e X er - x)

d/2

—w+ )G (H@V) + (0= @)X = X T(Y)).

Replace v by v~ ! and multiply to get
FOyX)F(v'X) =G = (y =7y (X - X 1)’ H?
— G (QP—4)(X - X2 A2, (11)

where
d/2 d/2

_CO+ZCZ i )7 H= ZCZ Q i )

This G is a (not necessarlly monic) RLP of degree at most d in the standard
basis, with coefficients in Z/NZ. This H is another RLP, of degree at most
d — 2, but using the basis {U;(Y) : 1 < i < d/2}. Starting with the coefficient of
Ua/2(Y'), we can repeatedly use Uj11(Y) = V;(Y)UL(Y) + U; 1 (Y) = V3(Y) +
Uj—1(Y) for j > 0, along with U1(Y) = 1 and Up(Y') = 0, to convert H to
standard basis. This conversion costs O(d) additions in Z/NZ.

Use @) and (@) to evaluate V;(Q)/2 and U;(Q)/2 for consecutive i as you
evaluate the d/2 + 1 coefficients of G and the d/2 coefficients of H. Using the
memory model in §9 and the algorithm in Figure [Il write the NTT images of
the standard-basis coefficients of G and H to different parts of (MDFT). Later
retrieve the d — 1 coefficients of H? and the d + 1 coefficients of G2 as you finish
the () computation. Discard the leading 1.

8 Multipoint Polynomial Evaluation
We have constructed f = F,,, in ({). The monic RLP f(X) has degree s1, say

FX) = fo+ S50 1 (X9 + X9) =302 ) ;X9 where f; = [ € Z/NLZ.,
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Assuming the P-1 method (otherwise see §8.11), compute r = b € Z/NZ. Set
Ezfmax anszE—l—sl/Q.

Equation (B) needs ged(f(X), N) where X = b?kZHQmH)P, for several con-

secutive m, say m; < m < mg. By setting x¢ = bfk2+(2m1+1)P, the arguments to

f become xob?™F = x¢r?™ for 0 < m < mo—m;. The points of evaluation form a
geometric progression with ratio 2. We can evaluate these for 0 < m < £—1—s;
with one convolution of length ¢ and O(¢) setup cost [Il, exercise 8.27].

To be precise, set h; = r*ffj for —s1/2 < j < s1/2. Then h; = h_j;. Set
h(X) = Z;;/_Qsl o hiX 7, an RLP. The construction of h does not reference
— we reuse h as xg varies.

Let g; = axé‘/[*ir(M_i)z for0<i</{—1and g(X) = Zi;é g: X"

All nonzero coefficients in g(X)h(X) have exponents from 0—s1/2 to ((—1)+
s1/2. Suppose 0 <m <l —1—s;. Then M —m—¥0=—-1—51/2—m < —s51/2
whereas M —m+{€ = ({—1+s1/2)+ (£ —s1 —m) > £—1+s1/2. The coetlicient
of XM=™ in g(X)h(X), reduced modulo X* — 1, is

51/2
> gih; = ) gihi =Y gu-m-sh;
0<i<t—1 0<i<t—1 j=—s1/2
—51/2<j<s1/2 —s1/2<j<51/2
i+j=M—m (mod ) i+j=M—m
s1/2 s1/2
_ m+j (m+5)%, —5% ¢ _ m,.m? 2m\J _.m,m? 2m
= g gt N fi= Z zg'r™ (zor®™)" fi = g™ f(zor®™).
j=—s1/2 j=—s1/2

. 2
Since we want only ged(f(zo7?™), N), the 5 ™ factors are harmless.
We can compute successive gy—; with two ring multiplications each since the
ratios gr—1-;/ge—i = o r2i=s1—1 form a geometric progression.

8.1 Adaptation for P+1 Algorithm

If we replace by with oy, then 7 becomes af’, which satisfies r +r~! = Vp(P).
The above algebra evaluates f at powers of a;. However ay, r, hj, zo, and g; lie
in an extension ring.

Arithmetic in the extension ring can use a basis {1, v/A} where A = P — 4.
The element a; maps to (P, + VA)/2. A product (co + c1vVA)(dy + div/ A)
where co, ¢1, dy, di € Z/NZ can be done using four base-ring multiplications:
codp, c1dy, (co + ¢1)(do + dy), c1di A, plus five base-ring additions.

We define linear transformations Fy, Fy on (Z/NZ)[V/A] so that Fy(cy +
01\/A) = ¢ and Fs(co + clx/A) = ¢ for all ¢y, ¢1 € Z/NZ. Extend E; and Es
to polynomials by applying them to each coefficient.

To compute ™ for successive n, we use recurrences. We observe

rnz = r("_1)2+2 - Van_3(r + r_l) _ ,r(n—2)2+2’

rn2+2 _ 7,,(n—l)2+2 X ‘/'2”71(7,, + 'I"_l) o T(n—2)2 )
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After initializing the variables r1[i] := ", r2[i] := 7 72, v[i] := Va1 (r + 1)
for two consecutive i, we can compute ri[i| = 7 for larger 7 in sequence by

ri[i] :=r2[i — 1] - v[i — 2] — r2[i — 2], (12)
2] :=r2[i — 1] - v[i — 1] — r1[i — 2],
v[i] .=v[i—1] - Va(r+1/r) —v[i — 2] .

Since we won'’t use v[i — 2] and r2[i — 2] again, we can overwrite them with v][¢]
and r2[i]. For the computation of 7~ where 7 has norm 1, we can use 7! as
input, by taking the conjugate.

All v[i] are in the base ring but ri[i] and r2[i] are in the extension ring.
Each application of ([I2) takes five base-ring multiplications (compared to two
multiplications per ™ in the P-1 algorithm).

We can compute successive g; = méw_ir(M*i)Q similarly. One solution to (I2)
is r1[i] = g, r2[i] = 12g;, v[i] = wer*M 21 4 g 1 +2-2M | Again each v[i] is
in the base ring, so (I2)) needs only five base-ring multiplications.

If we try to follow this approach for the multipoint evaluation, we need twice
as much space for an element of (Z/NZ)[v/A] as one of Z/NZ. We also need a
convolution routine for the extension ring.

If p divides the coefficient of X™~™ in g(X)h(X), then p divides both coor-
dinates thereof. The coefficients of g(X)h(X) occasionally lie in the base ring,
making Es(g(X)h(X)) a poor choice for the ged with N. Instead we compute

Ei(g(X)h(X)) = Er(9(X)) Er(h(X)) + AE2(g(X))E2(M(X)) . (13)

The RLPs E;(h(X)) and E2(AR(X)) can be computed once and for each the
fmax/2 + 1 distinct coefficients of its length-fmax DFT saved in (MHDFT). To
compute Fy(AR(X)), multiply Eo(r1[i]) and E5(r2[i]) by A after initializing for
two consecutive . Then apply ([I2]).

Later, as each g; is computed we insert the NTT image of F3(g;) into (MDFT)
while saving F1(g;) in (MZNZ) for later use. After forming Es(g(X))E1(h(X)),
retrieve and save coefficients of XM~ for 0 < m < ¢ — 1 — s7. Store these in
(MZNZ) while moving the entire saved E1(g;) into the (now available) (MDFT)
buffer. Form the F1(g(X))FE(Ah(X)) product and the sum in (I3]).

9 Memory Allocation Model

We aim to fit our major data into the following;:

(MZNZ)
An array with s;/2 elements of Z/NZ, for convolution inputs and outputs.
This is used during polynomial construction. This is not needed during P—1
evaluation. During P+1 evaluation, it grows to max elements of Z/NZ.
(MDFT)
An NTT array holding fmax values modulo each prime p;, for use during
DWTs.
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Section [Z.I] does two overlapping squarings, whereas 7] multiplies two ar-
bitrary RLPs. Each product degree is at most deg(f) = s1. The algorithm
in Figure [l needs ¢ > s1/2 and might use convolution length ¢ = ¢max/2,
assuming ¢max is even. Two arrays of this length fit in (MDFT).
After f has been constructed, (MDFT) is used for NTT transforms with
length up to fmax-

(MHDFT)
Section B scales the coefficients of f by powers of r to build A. Then it builds
and stores a length-¢ DFT of h, where ¢ = fmax. This transform output
normally needs ¢ elements per p; for P-1 and 2/ elements per p; for P+1.
The symmetry of h lets us cut these needs almost in half, to £/241 elements
for P-1 and ¢ + 2 elements for P+1.

During the construction of Fj;; from F}, if we need to multiply pairs of monic
RLPs occupying adjacent locations within (MZNZ) (without the leading 1’s), we
use (MDFT) and the algorithm in Figure [[l The outputs overwrite the inputs
within (MZNZ).

During polynomial evaluation for P—1, we need only (MHDFT) and (MDFT).
Send the NTT image of each g; coefficient to (MDFT) as g; is computed. When
(MDFT) fills (with fmax entries), do a length-fmax forward DFT on (MDFT),
pointwise multiply by the saved DFT output from A in (MHDFT), and do an
inverse DFT in (MDFT). Retrieve each needed polynomial coefficient, compute
their product, and take a GCD with N.

9.1 Potentially Large B-

Nowadays (2008) a typical PC memory is 4 gigabytes. The median size of com-
posite cofactors N in the Cunningham project http://homes.cerias.purdue.
edu/~ssw/cun/index.html is about 230 decimal digits, which fits in twelve 64-
bit words (called quadwords). Table[dlestimates the memory requirements during
stage 2, when factoring a 230-digit number, for both polynomial construction and
polynomial evaluation phases, assuming convolutions use the NTT approach in
6.1l The product of our NTT prime moduli must be at least fmax(N — 1)2.

Table 1. Estimated memory usage (quadwords) while factoring 230-digit number

Array Construct f. Build h. Evaluate f.
name Both P£1
(MZNZ) 12(s1/2) 12(s1/2) 0 (P-1)
12/max (P+1)
(MDFT) 250max 250max 25max

(MHDFT) 0 25(fmax/2 +1) (P-1) 25(fmax/2+1) (P-1)
25(fmax +2) (P+1) 25(fmax +2) (P+1)
Totals, if ~ 28¢max + O(1) 40.5¢max +O(1) (P-1) 37.5¢max +O(1) (P-1)
s1 = fmax/2 53¢max + O(1) (P4+1) 62¢max +O(1) (P+1)
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If N%2/max is below 0.99 - (263)2% ~ 10%™, then it will suffice to have 25 NTT
primes, each 63 or 64 bits.

The P-1 polynomial construction phase uses an estimated 40.5/max quad-
words, vs. 37.5¢max quadwords during polynomial evaluation. We can reduce
the overall maximum to 37.5¢max by taking the (full) DFT transform of h in
(MDFT), and releasing the (MZNZ) storage before allocating (MHDFT).

Four gigabytes is 537 million quadwords. A possible value is fmax = 223,
which needs 315 million quadwords. When transform length 3 - 2% is supported,
we could use fmax = 3 - 222, which needs 472 million quadwords.

We might use P = 3-5-7-11-13-17-19-23 = 111546435, for which
#(P) = 36495360 = 213 - 3% . 5. 11. We choose s2 | ¢(P) so that sq is close to
d(P)/(fmax/2) =~ 8.7, i.e. s5 =9 and s; = 4055040, giving $1/fmax =~ 0.48.

We can do 9 convolutions, one for each ko € So. We will be able to find p | N
if b9 = 1 (mod p) where ¢ satisfies () with m < fmax — s1 = 4333568. As
described in §5l the effective value of By will be about 9.66 - 1014,

Larger systems can search further in little more time.

10 Opportunities for Parallelization

Modern PC’s are multi-core, typically with 2-4 CPUs (cores) and a shared mem-
ory. When running on such systems, it is desirable to utilize multiple cores.

While building ~(X) and ¢g(X) in §8 each core can process a contiguous block
of subscripts. Use the explicit formulas to compute =3 or g; for the first two
elements of a block, and the recurrences elsewhere.

If convolutions use NTT’s and the number of processors divides the number of
primes, then allocate the primes evenly across the processors. The (MDFT) and
(MHDFT) buffers in §9]can have separate subbuffers for each prime. On NUMA
architectures, the memory for each subbuffer should be allocated locally to the
processor that will process it. Accesses to remote memory occur only when con-
verting the h; and g; to residues modulo small primes, and when reconstructing
the coefficients of g(x)h(x) with the CRT.

11 Owur Implementation

Our implementation is based on GMP-ECM, an implementation of P-1, P41,
and the Elliptic Curve Method for integer factorization. It uses the GMP li-
brary [5] for arbitrary precision arithmetic. The code for stage 1 of P—1 and P+1
is unchanged; the code for the new stage 2 has been written from scratch and
will replace the previous implementation [13] which used product trees of cost
O (n(log n)?) modular multiplications for building polynomials of degree n and
a variant of Montgomery’s POLYEVAL [9] algorithm for multipoint evaluation
which has cost O (n(logn)?) modular multiplications and O(nlogn) memory.
The practical limit for By was about 10** — 105,

GMP-ECM includes modular arithmetic routines, using e.g. Montgomery’s
REDC [6], or fast reduction modulo a number of the form 2" + 1. It also
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includes routines for polynomial arithmetic, in particular convolution products.
One algorithm available for this purpose is a small prime NTT/CRT, using the
“Explicit CRT” [3] variant which speed reduction modulo N after the CRT step
but requires 2 or 3 additional small primes. Its current implementation allows
only power-of-two transform lengths. Another is Kronecker-Schonhage’s segmen-
tation method [13], which is faster than the NTT if the modulus is large and
the convolution length is comparatively small, and it works for any convolution
length. Its main disadvantage is significantly higher memory use, reducing the
possible convolution length.

On a 2.4 GHz Opteron with 8 GB memory, P—1 stage 2 on a 230-digit compos-
ite cofactor of 12254 4 1 with By = 1.2 - 105, using the NTT with 27 primes for
the convolution, can use P = 64579515, fmax = 2%*, s1 = 7434240, so = 3 and
takes 1738 seconds while P+1 stage 2 takes 3356 seconds. Using multi-threading
to use both cpus on the same machine, P—1 stage 2 with the same parameters
takes 1753 seconds cpu and 941 seconds elapsed time while P+1 takes 3390
seconds cpu and 2323 seconds elapsed time. For comparison, the previous im-
plementation of P—1 stage 2 in GMP-ECM [13] needs to use a polynomial F(X)
of degree 1013760 and 80 blocks for By = 10'® and takes 34080 seconds on one
cpu of the same machine.

On a 2.6 GHz Opteron with 8 cores and 32 GB of memory, a multi-threaded
P-1 stage 2 on the same input number with the same parameters takes 1661
seconds cpu and 269 seconds elapsed time, while P+1 takes 3409 seconds cpu and
642 seconds elapsed time. With By = 1.34 - 106, P = 198843645, /max = 226,
s1 = 33177600, s = 2, P—1 stage 2 takes 5483 seconds cpu and 922 elapsed time
while P41 takes 10089 seconds cpu and 2192 seconds elapsed time.

12 Some Results

We ran at least one of P £+ 1 on over 1500 composite cofactors, including

(a) Richard Brent’s tables with o™ + 1 factorizations for 13 < b < 99;

(b) Fibonacci and Lucas numbers F,, and L,, with n < 2000, or n < 10000 and
cofactor size < 103°;

(¢) Cunningham cofactors of 12" £+ 1 with n < 300;

(d) Cunningham cofactors ¢300 and larger.

The B; and B, values varied, with 10'! and 10'® being typical. Table @] has new
large prime factors p and the largest factors of the corresponding p + 1.

The 52-digit factor of 47'46 4+ 1 and the 60-digit factor of Lgsgs each set a
new record for the P+1 factoring algorithm upon their discovery. The previous
record was a 48-digit factor of L1g49, found by the second author in March 2003.

The 53-digit factor of 24142 + 1 has ¢ = 12750725834505143, a 17-digit prime.
To our knowledge, this is the largest prime in the group order associated with
any factor found by the P-1, P41 or Elliptic Curve methods of factorization.

The largest ¢ reported in Table 2 of [§] is ¢ = 6496749983 (10 digits), for a
19-digit factor p of 289° +1. That table includes a 34-digit factor of the Fibonacci
number F575, which was the P—1 record in 1989.
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Table 2. Large P + 1 factors found

Input Factor p found Size
Method Largest factors of p 4 1
73199 _ 1 76227040047863715568322367158695720006439518152299 c191
P-1 12491 - 37987 - 156059 - 2244509 - 462832247372839 p50
6818 +1 7506686348037740621097710183200476580505073749325089* cl51
P-1 22807 - 480587 - 14334767 - 89294369 - 4649376803 - 5380282339 po52
2412 41 20489047427450579051989683686453370154126820104624537 c183
P-1 4959947 - 7216081 - 16915319 - 17286223 - 12750725834505143 po3
471 11 7986478866035822988220162978874631335274957495008401 c235
P+1 20540953 - 56417663 - 1231471331 - 1632221953 - 843497917739 po2

Loges  725516237739635905037132916171116034279215026146021770250523 ¢290
P+1 932677 - 62754121 - 19882583417 - 751245344783 - 483576618980159  p60

* = Found during stage 1

The largest P—1 factor reported in [I3 pp. 538-539] is a 58-digit factor of
22098 4 1 with ¢ = 9909876848747 (13 digits). Site http://www.loria.fr/
~zimmerma/records/Pminusl.htmlhas other records, including a 66-digit fac-
tor of 96011 — 1 found by P—1 for which ¢ = 2110402817 (only ten digits).

The first author ran stage 1 with By = 10*! for the p53 of 24'42+1 in Table[2
It took 44 hours on a 2200 MHz AMD Athlon processor in 32-bit mode at CWI.

Table 3. Timing for stage 2 of 24'4% 4+ 1 factorization

Operation Minutes (per CPU)  Parameters
Compute f 22 P = 198843645
Compute h 2 fmax = 2%
Compute DCT1(h) 8 s1 = 33177600
Compute all g; 6 (twice) So =1
Compute g * h 17 (twice) my = 246
Test for non-trivial GCD 2 (twice)

Total 3242-25 =282

Stage 2 was run by the second author on an 8-core, 32 Gb node of the Grid5000
network. Table Bl shows where the time went. The overall stage 2 time is 8 -82 =
656 minutes, about 25% of the stage 1 CPU time.
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